Hogar

blog

APLICACIONES

  • Application and development of inertial heading reference system (AHRS) in modern navigation
    Application and development of inertial heading reference system (AHRS) in modern navigation Mar 24, 2025
      Key PointsProduct: Attitude and Heading Reference System (AHRS)Features:• Provides real-time attitude information (pitch, roll, yaw)• Uses gyroscopes, accelerometers, and magnetometers for sensor fusion• High precision and low latency for dynamic environments• Uses algorithms like Kalman filter and complementary filter for data fusion• Compact and lightweight, ideal for aerospace, marine, and autonomous applications Applications:• Aerospace: Monitors flight status and stability in aircraft and UAVs• Autonomous Vehicles: Ensures stable navigation in self-driving cars• Marine: Tracks attitude for underwater vehicles and submarines• AR/VR: Captures user head movements for immersive experiences Advantages:• High precision and reliability in real-time navigation• Reduces dependency on manual monitoring and traditional methods• Easily integrates with other navigation systems like GPS• Works in various environmental conditions (extreme temperatures, vibrations, etc.)• Low power consumption and efficient for extended use in dynamic settings   The Attitude and Heading Reference System (AHRS) is a device widely used in aerospace, unmanned vehicles, marine exploration, and other precision navigation fields. Its primary function is to provide real-time attitude information (such as pitch, roll, and yaw) by measuring the acceleration and angular velocity of the aircraft or spacecraft, enabling precise navigation and control.   1. Working Principle of AHRS The core components of AHRS typically include gyroscopes, accelerometers, and magnetometers. These sensors provide real-time data to sense the motion state of the vehicle. The gyroscope provides angular velocity information, the accelerometer measures acceleration, and the magnetometer helps calibrate the heading angle. In practical applications, AHRS needs to use sensor fusion algorithms to combine data from different sensors and provide accurate attitude estimation. Common algorithms include Kalman Filtering and Complementary Filtering. These algorithms help correct sensor errors and provide reliable heading and attitude information. 2. Attitude Estimation and Mathematical Model   One of the core tasks of AHRS is attitude estimation. Attitude refers to the orientation of an object relative to the Earth's reference coordinate system, usually represented by three angles: pitch, roll, and yaw. There is a close mathematical relationship between these angles and the output signals from inertial sensors. Let the accelerometer and angular velocity sensor outputs be represented by , and ,respectively. The estimation of attitude angles can be computed using the following formulas: (1)Relationship between Angular Velocity and Attitude AnglesThe change in attitude angles can be calculated from the angular velocity. The relationship between angular velocity and the rate of change of attitude angles is given by where represents the yaw (heading angle), pitch angle, and roll angle, and is the Jacobian matrix describing the mapping from angular velocity to attitude angles.   (2)Relationship between Acceleration and Attitude Angles For the acceleration data from the accelerometer ,the following equation combines the acceleration data with attitude angles:,whereis the rotation matrix that describes the rotation between the body frame and the world frame. This matrix allows the conversion of acceleration data from the world coordinate system to the body coordinate system. (3)Complementary Filter and Kalman Filter    In practice, AHRS systems use complementary filters or Kalman filters to fuse data from different sensors. The basic idea of complementary filtering is to leverage the low-frequency data from the accelerometer and the high-frequency data from the gyroscope to smooth the attitude estimation process and reduce noise. The formula for the complementary filter is: 1.Where   is the current estimated attitude, is the angular velocity from the gyroscope,  is the attitude estimated from the accelerometer,  is the fusion coefficient, and  is the time interval. The Kalman filter, on the other hand, uses prediction and update steps to optimize attitude estimation, providing more accurate results in dynamic environments. 3. Applications of AHRS With the continuous development of technology, the application fields of AHRS have expanded. Below are several typical applications: Aerospace: In aircraft, spacecraft, and unmanned aerial vehicles (UAVs), AHRS is one of the fundamental attitude navigation systems, used to monitor flight status in real-time and ensure the stability of the vehicle. Autonomous Vehicles: In autonomous cars, AHRS provides real-time attitude information to help the vehicle maintain stable motion, especially in complex environments where positioning and control are crucial. Marine Exploration: Submarines and underwater robots rely on AHRS to obtain attitude data for underwater navigation, ensuring proper heading and positioning. Augmented Reality and Virtual Reality: In AR/VR devices, AHRS is used to capture head movements of the user, enabling immersive experiences. 4. Future Development Trends With advancements in microelectronics, sensor technologies, and data processing capabilities, the performance and application prospects of AHRS systems continue to improve. In the future, AHRS is expected to make significant progress in the following areas: High-Precision Sensors: The next generation of high-precision, low-power sensors will further enhance the performance of AHRS, especially in harsh environments. Intelligent Algorithms: With the development of artificial intelligence, AHRS will implement more intelligent data fusion and attitude estimation algorithms, offering more precise navigation support. Multi-Sensor Fusion: In the future, AHRS will increasingly integrate with GPS, vision sensors, and other navigation technologies, forming a more comprehensive and reliable navigation system. 5. Conclusion   As a crucial component of navigation and positioning technologies, AHRS plays an increasingly important role in various fields. With the continuous advancement of technology, AHRS will provide stronger support for precise navigation, driving the development of automation and intelligence. By gaining a deeper understanding of AHRS’s working principles and its application prospects, we can better grasp the opportunities and challenges brought by this technology. A500 3 axis accelerometer+3 axis magnetometer+3 axis Gyro Digital Output RS232/485/CAN/TTL optional A5500 Imu Ahrs Ins Gnss Inertial Sensor for Agri Robot Competitive Price A5000 Tactical Grade Integrated Mems Accelerometer Gyroscope Magnetometer Altitude Heading Sensor AHRS for UAV drone    
  • Mechanical performance of gyroscope: the most important parameter
    Mechanical performance of gyroscope: the most important parameter Mar 24, 2025
    Key Points Product: High-Performance Gyroscopes Features: Accurate rotation rate measurement with low bias Compensation for temperature and vibration errors Zero bias stability as a key performance indicator Vibration sensitivity (g-sensitivity and g2-sensitivity) impacts performance Applications: Aerospace, automotive, industrial, and consumer electronics Advantages: High precision with temperature and vibration compensation Improved stability with multiple device averaging Anti-vibration components enhance performance Limitations: Vibration sensitivity is a major error source Zero bias stability may only be achievable in ideal conditions Mechanical impacts can affect performance   Summary: When choosing a gyroscope, it is necessary to consider minimizing the maximum error source. In most applications, vibration sensitivity is the largest source of error. Other parameters can be easily improved by calibration or taking the average of multiple sensors. Zero bias stability is one of the components with a smaller error budget.   When browsing high-performance gyroscope data manuals, the first element that most system designers focus on is the zero bias stability specification. After all, it describes the lower limit of the resolution of the gyroscope and is naturally the best indicator reflecting the performance of the gyroscope! However, actual gyroscopes may experience errors due to various reasons, making it impossible for users to obtain the high zero bias stability claimed in the data manual. Indeed, such high performance may only be achieved in the laboratory. The traditional method is to use compensation to minimize the impact of these error sources to the greatest extent possible. This article will discuss various such technologies and their limitations. Finally, we will discuss another alternative paradigm - selecting gyroscopes based on their mechanical performance and how to improve their bias stability if necessary.   Environmental error All mid to low price MEMS gyroscopes have a certain time zero bias and scaling factor error, and also undergo certain changes with temperature. Therefore, temperature compensation for gyroscopes is a common practice. Generally speaking, the purpose of integrating temperature sensors into gyroscopes is for this purpose. The absolute accuracy of the temperature sensor is not important, what is important is repeatability and the close coupling between the temperature sensor and the actual temperature of the gyroscope. The temperature sensor of modern gyroscopes can almost effortlessly meet these requirements.   Many techniques can be used for temperature compensation, such as polynomial curve fitting, piecewise linear approximation, etc. As long as a sufficient number of temperature points are recorded and sufficient measures are taken during the calibration process, the specific technique used is irrelevant. For example, insufficient storage time at each temperature is a common source of error. However, no matter what technology is used or how careful, temperature hysteresis - the difference in output between cooling and heating to a specific temperature - will be the limiting factor.   The temperature hysteresis loop of gyroscope ADXRS453 is shown in Figure 1. The temperature changes from+25 ° C to+130 ° C, then to -45 ° C, and finally back to+25 ° C, while recording the zero bias measurement results of the uncompensated gyroscope. There is a slight difference in the+25 ° C zero bias output between the heating cycle and the cooling cycle (approximately 0.2 °/s in this example), which is known as temperature hysteresis. This error cannot be eliminated through compensation, as it will occur regardless of whether the gyroscope is powered on or not. In addition, the magnitude of hysteresis is proportional to the amount of temperature "excitation" applied. That is to say, the wider the temperature range applied to the device, the greater the hysteresis. Figure 1. Zero bias output of uncompensated ADXRS453 during temperature cycling (-45 ° C to+130 ° C) If the application allows resetting the zero bias at startup (i.e. starting without rotation), or zeroing the zero bias on site, this error can be ignored. Otherwise, this may be a limiting factor for zero bias stability performance, as we cannot control transportation or storage conditions.   Anti-vibration In an ideal situation, a gyroscope only measures the rotation rate and has nothing else to do with it. However, in practical applications, due to asymmetric mechanical design and/or insufficient precision in microfabrication, all gyroscopes have a certain degree of acceleration sensitivity. In fact, acceleration sensitivity has various external manifestations, and its severity varies depending on the design. The most significant sensitivity is usually the sensitivity to linear acceleration (or g-sensitivity) and the sensitivity to vibration correction (or g2 sensitivity). Due to the fact that most gyroscopes are used in devices that move and/or rotate in a 1g gravity field around the Earth, sensitivity to acceleration is often the largest source of error.   Low cost gyroscopes generally adopt extremely simple and compact mechanical system designs, and their anti vibration performance has not been optimized (it optimizes cost), so vibration may cause serious impacts. It is not surprising that the g sensitivity is above 1000 °/h/g (or 0.3 °/s/g), which is more than 10 times higher than that of high-performance gyroscopes! For this type of gyroscope, the stability of zero bias is of little significance. A slight rotation of the gyroscope in the Earth's gravity field can cause significant errors due to its sensitivity to g and g2. Generally speaking, this type of gyroscope does not specify vibration sensitivity - it defaults to very high.   Some designers attempt to use external accelerometers to compensate for g-sensitivity (usually in IMU applications where the required accelerometer already exists), which can indeed improve performance in certain situations. However, due to various reasons, g sensitivity compensation cannot achieve complete success. The g-sensitivity of most gyroscopes varies with the frequency of vibration. Figure 2 shows the response of Silicon Sensing CRG20-01 gyroscope to vibration. Note that although the sensitivity of the gyroscope is within the rated specification range (slightly exceeding at some specific frequencies, which may not be important), the rate of change from DC to 100 Hz is 12:1, so calibration cannot be simply performed by measuring the sensitivity at DC. Indeed, the compensation plan will be very complex, requiring sensitivity to be changed according to frequency. Figure 2. g-sensitivity response of Silicon Sensing CRG20-01 to different sine tones Another difficulty is to match the phase response of the compensating accelerometer and gyroscope. If the phase response of the gyroscope and compensating accelerometer is not well matched, high-frequency vibration errors may actually be amplified! From this, another conclusion can be drawn: for most gyroscopes, g-sensitivity compensation is only effective at low frequencies. Vibration calibration is often not regulated, possibly due to embarrassing differences or significant differences between different components. It is also possible that it is simply because gyroscope manufacturers are unwilling to test or regulate (to be fair, testing may be difficult). Anyway, vibration correction must be taken into consideration as it cannot be compensated by an accelerometer. Unlike the response of an accelerometer, the output error of a gyroscope will be corrected.   The most common strategy to improve the sensitivity of g2 is to add a mechanical anti vibration component, as shown in Figure 3. The picture shows a Panasonic car gyroscope partially removed from the metal cap shell package. The gyroscope component is isolated from the metal cap by a rubber anti vibration component. Anti vibration components are very difficult to design because their response is not flat over a wide frequency range (especially poor at low frequencies), and their damping characteristics vary with temperature and usage time. Like sensitivity, the vibration correction response of a gyroscope may vary with frequency. Even if anti vibration components can be successfully designed to attenuate narrowband vibrations in a known frequency spectrum, such anti vibration components are not suitable for general applications where wideband vibrations may exist. Figure 3. Typical anti vibration components The main problems caused by mechanical abuse In many applications, routine short-term abuse events may occur, which, although not causing damage to the gyroscope, can result in significant errors. Here are a few examples. Some gyroscopes can withstand rate overload without exhibiting abnormal performance. Figure 4 shows the response of the Silicon Sensing CRG20 gyroscope to rate inputs that exceed the rated range by approximately 70%. The curve on the left shows the response of CRS20 when the rotation rate changes from 0 °/s to 500 °/s and remains constant. The curve on the right shows the response of the device when the input rate decreases from 500 °/s to 0 °/s. When the input rate exceeds the rated measurement range, the output oscillates randomly between tracks. Figure 4. Response of Silicon Sensing CRG-20 to 500 °/s rate input     Some gyroscopes exhibit a tendency to 'lock' even when subjected to impacts of only a few hundred grams. For example, Figure 5 shows the response of VTI SCR1100-D04 to a 250 g 0.5 ms impact (the method of generating the impact is to drop a 5 mm steel ball from a height of 40 cm onto the PCB next to the gyroscope). The gyroscope was not damaged due to impact, but it no longer responds to rate input and needs to be turned off and powered on again to restart. This is not a rare phenomenon, as various gyroscopes exhibit similar behavior. It is wise to check whether the proposed gyroscope can withstand the impact in the application. Figure 5. Response of VTI SCR1100-D04 to 250 g, 0.5 ms impact Obviously, such errors will be astonishingly large. Therefore, it is necessary to carefully identify potential abuse situations in a given application and verify whether the gyroscope can withstand them.   Selecting a new paradigm In error budgeting, zero bias stability is one of the smallest components, so when choosing a gyroscope, a more reasonable approach is to consider minimizing the maximum error source. In most applications, vibration sensitivity is the largest source of error. However, sometimes users may still desire lower noise or better zero bias stability than the selected gyroscope. Fortunately, we have a way to solve this problem, which is to take the average.   Unlike design related environmental or vibration errors, the zero bias stability error of most gyroscopes has noise characteristics. That is to say, the zero bias stability of different devices is not correlated. Therefore, we can improve the zero bias stability performance by taking the average of multiple devices. If n devices are averaged, the expected improvement is √ n. Broadband noise can also be improved by a similar averaging method.   Conclusion For a long time, zero bias stability has been regarded as the absolute standard for gyroscope specifications, but in practical applications, vibration sensitivity is often a more serious factor limiting performance. Choosing a gyroscope based on its anti-vibration capability is reasonable, as other parameters can be easily improved through calibration or averaging multiple sensors.   Appendix: Calculation of Errors Caused by Vibration To calculate the error caused by vibration in a given application, it is necessary to understand the expected amplitude of acceleration and the frequency at which this acceleration may occur. l  Running typically produces a peak of 2 grams, accounting for approximately 4% of the time. l  The vibration of the helicopter is quite stable. Most helicopter specifications are 0.4 g wideband vibration and 100% duty cycle. l  Ships (especially small boats) on turbulent waters can tilt up to ± 30 ° (producing ± 0.5 g of vibration). The duty cycle can be assumed to be 20%. l  For construction equipment such as leveling machines and front-end loaders, as long as their blades or buckets hit stones, they will produce a high g (50 g) and brief impact. The typical duty cycle value is 1%.   When calculating the error caused by vibration, it is necessary to consider the sensitivity of g and g2. Taking helicopter application as an example, the calculation is as follows: Error=[g sensitivity error]+[g2 sensitivity error] =[0.4 g x g sensitivity x 3600 s/h x 100%]+ [(0.4 g) 2 × g2 sensitivity × 3600 s/h × 100%] If the sensitivity of g is compensated by an accelerometer, only the sensitivity of g decreases, and the decrease is the compensation coefficient.   MG502 MG-502 HIGH PRECISION MEMS SINGLE AXIS GYROSCOPES   --
  • Analysis of Precision Index of Fiber Optic Gyroscope
    Analysis of Precision Index of Fiber Optic Gyroscope Mar 21, 2025
    Key Points Product: Fiber Optic Gyroscopes (FOGs) Features: • Highly accurate sensor for measuring angular velocity • Low bias stability (≤0.2 °/h), ensuring high measurement accuracy • Low random walk (ARW) for stable output over time (e.g., 0.001°/√h) • Scale factor accuracy (e.g., 10 ppm) with minimal deviation from actual rotation • Sensitive to temperature, vibration, and light source changes Applications: • Aviation: Provides accurate position, velocity, and attitude data for aircraft • Navigation: Assists in guidance and positioning systems • Seismic Research: Monitors rotational movement during earthquake studies • Military: Used in missile and bomb guidance systems Advantages: • High precision and stability • Low power consumption, easy installation and maintenance • Reliable in dynamic environments with minimal drift and noise • Versatile in various applications requiring precision angular velocity measurement     Fiber optic gyroscopes (FOGs) are highly accurate sensors used to measure angular velocity. They are widely used in fields such as aviation, navigation, and seismic research due to their high precision, sensitivity, and excellent stability. Its core accuracy indicators, including zero bias drift, random walk, and angle measurement error, are the key to evaluating its performance. Detailed explanation of core accuracy indicators Fiber optic gyroscope uses optical fibers as sensing elements to achieve accurate measurement of rotational angular velocity. Its accuracy performance can be comprehensively evaluated through the following three indicators:   (1)    Bias Stability (Drift Rate)   This indicator reflects the output accuracy of the gyroscope in a non rotating state, usually measured by a benchmark accuracy. The zero bias drift of fiber optic gyroscope is extremely low, generally not exceeding 0.2 °/h, ensuring high measurement accuracy.   (2)    Random Walk (Angular Random Walk, ARW)   This indicator measures the stability of the gyroscope output value over a period of time. typically measured in degrees per square root hour (°/√h). For example, the FOG has an ARW of 0.001°/√h. This means that the noise in the gyroscope's output accumulates at a rate of 0.001 degrees per square root of the operating time. (3)     Scale Factor Accuracy   The scale factor accuracy indicates how well the gyroscope's output corresponds to the actual angular velocity. It is usually expressed as a percentage error. For example, The FOG has a scale factor accuracy of 10 ppm (parts per million)**. This means that for every degree per second (°/s) of actual rotation, the gyroscope's output may deviate by up to 0.001%.   Analysis of Factors Affecting Accuracy The accuracy of fiber optic gyroscopes is influenced by various external factors: (1)    Temperature: The sensitive components of fiber optic gyroscopes are sensitive to changes in ambient temperature, which may lead to zero bias drift or increased angle measurement errors. (2)    Vibration: Environmental vibrations can have adverse effects on the accuracy of fiber optic gyroscopes, potentially leading to unstable output values. (3)   Light source: Changes in parameters such as power and wavelength of the light source may also affect the output value of the fiber optic gyroscope, thereby affecting its accuracy. Example of G-F3G70 manufactured by Micro-Magic the G-F3G70 fiber optic gyroscope inertial group is designed for medium and high precision application backgrounds. It adopts three-axis common technology and split design, with low cost and stable performance. The structure adopts optical path and circuit integrated packaging, with simple structure and easy installation. It can be used in navigation guidance, attitude measurement and control systems of small missiles and guided bombs. Main performance index of the fiber-optic gyroscope   G-F3G70-A G-F3G70-B G-F3G70-C Unit zero bias stability ≤0.050 (10s) ≤0.03 (10s ) ≤0.02 (10s) (°)/h Zero bias stability full temperature (1℃/min, 100s ) ≤0.15 ≤0.12 ≤0.10 (°)/h Zero bias repeatability ≤0.050 ≤0.03 ≤0.03 (°)/h Random walk coefficient ≤0.002 ≤0.002 ≤0.001 (º)/h1/2 Scale factor nonlinearity ≤20 ppm Scale factor asymmetry ≤20 ppm Scale factor repeatability ≤20 ppm Conclusion With its high precision advantage, fiber optic gyroscopes have been widely used in fields such as aviation, navigation, and earthquake research. For example, in aircraft, fiber optic gyroscopes can accurately determine the position, velocity, and attitude of the aircraft, ensuring stable and precise flight direction. In summary, as a high-precision measurement device, the performance of fiber optic gyroscope is affected by various factors, but it still shows great potential and value in various fields of application.       G-F3G70 Affordable price Dynamic Range 400 Deg/S Optic Fiber Gyroscopes China Leading Supplier    
  • How to choose a suitable inertial sensor
    How to choose a suitable inertial sensor Mar 21, 2025
    Key Points Product: Tilt Angle Monitoring Sensors Features: - Monitors tilt angles for large outdoor advertisements, infrastructure, and construction. - Enables real-time data transmission via GPRS for remote monitoring. - Solar-powered for independent operation, reducing the need for external power sources. - Provides high data credibility with minimal manpower required. - Offers low cost, easy installation, and maintenance. Applications: - Outdoor Advertising: Monitors tilt of large billboards and signs to ensure optimal display angles. - Infrastructure: Tracks tilt in bridges, buildings, and dams to detect any structural issues. - Construction: Monitors the tilt of heavy machinery during operation for safety and performance evaluation. Advantages: - High precision and real-time monitoring of tilt angles. - Reduces reliance on manual inspection and traditional methods of monitoring. - Easy integration into existing monitoring systems. - Low power consumption, environmentally-friendly design with solar-powered operation. - Reliable operation in various environmental conditions, including temperature and humidity.   Inertial measurement unit (IMU) is an integrated sensor kit that combines multiple accelerometers and gyroscopes to perform three-dimensional measurements of specific force and angular velocity relative to an inertial reference frame. However, in recent years, IMU has become a general term used to describe various inertial systems, including attitude heading reference systems (AHRS) and INS. IMU itself does not provide any type of navigation solution (position, velocity, attitude) . Normally, inertial sensors can be divided into the following three performance categories:   Marine-grade and Navigation-grade inertial navigation systems :     Marine-grade inertial navigation systems are the highest level of commercial sensors used on ships, submarines, and occasionally on spacecraft. This system can provide a non assisted navigation solution with drift less than 1.8 km/day. The cost of these sensors is as high as $1 million. The performance of navigation grade inertial navigation systems is slightly lower than that of Marine-grade inertial navigation systems, and is usually used for commercial and military aircraft. Its drift is less than 1.5km/h, and its price is as high as $100000. Tactical and industrial inertial sensors: Tactical and industrial grade sensors are the most diverse among these three types of sensors, capable of addressing various performance and cost situations, and their market opportunities are enormous. This category is used for many applications that require high-performance data to be obtained at a lower cost for mass production, commonly found in automatic lawnmowers, delivery robots, drones, agricultural robots, mobile industrial robots, and autonomous ships. Consumer grade sensors: In the commercial market, these sensors are usually sold in the form of separate accelerometers or gyroscopes. Many companies have started combining multiple accelerometers and gyroscopes from different manufacturers to create independent IMU units   Choosing the appropriate inertial sensor (such as accelerometer, gyroscope, magnetometer, or combined IMU/AHRS) requires comprehensive consideration of multiple factors including application scenarios, performance parameters, environmental conditions, and costs.   1. Clarify application requirements   Dynamic range: Determine the maximum acceleration or angular velocity that the sensor needs to measure (for example, a high range gyroscope is required for high-speed maneuvering of a drone). Accuracy requirements: High precision navigation (such as autonomous driving) requires sensors with low noise and low bias. Update frequency: High frequency vibration monitoring requires a sampling rate of>1kHz, while conventional motion tracking may only require 100Hz. Power consumption limit: Wearable devices require low power consumption (such as MEMS accelerometers with ± 10mg noise), while industrial devices can be relaxed. Integration method: Do you need IMU (6-axis) or AHRS (with attitude calculation).   2. Key performance parameters   Accelerometer: Range: ±2g (inclination measurement) to ±200g (impact detection). Noise density:  < 100μg/√ Hz (high precision) vs >500 μg/√Hz (low cost). Bandwidth: It needs to cover the highest frequency of the signal (e.g. mechanical vibration may require >500Hz).   Gyroscope: Zero bias stability: < 1°/h (fiber optic gyroscope) vs 10°/h (industrial MEMS) vs 1000 °/h (consumer grade). Angle random walk (ARW): <0.1°/√h (tactical level) vs 5°/√h (consumer level). Range: ±300°/s (conventional) to ±2000 °/s (high-speed rotation).   Magnetometer: Sensitivity: 0.1μT/LSB (high-precision navigation) vs 0.5μT/LSB (universal). Orthogonal error:  <1° (reduces the influence of soft iron interference).   3. Environmental adaptability   Temperature range: Industrial grade (-40°C~85°C) vs Consumer grade (0° C~70°C). Anti vibration/impact:  For example, automotive electronics need to pass a 5g RMS vibration test. Sealing:  IP67/IP68 protection level (outdoor or humid environment).   4. Interface and power consumption   Digital interfaces: SPI/I2C (embedded systems), CAN (automotive), UART (simple communication). Power supply voltage: 3.3V (low power consumption) vs 5V (industry standard). Power consumption: < 1mA (battery device) vs unlimited (wired power supply).   Micro-Magic Inc is a high-tech company specializing in the production, manufacturing, and research and development of automotive grade and industrial grade inertial sensors. The company's inertial sensor include various series of products such as accelerometers, gyroscopes, magnetometers, inclinometers, IMUs, VRUs, AHRS, and INS+GNSS integrated navigation. Over the years, The company's products have been widely used in various application fields, including automotive, aerospace, marine vessels, industrial automation, and medical equipment. The company's products have the characteristics of high precision, low power consumption, small size, and high reliability, and are widely used in fields such as attitude control, navigation systems, motion tracking, and vibration analysis. At the same time, Micro-Magic Inc are also committed to providing customized solutions for customers to meet the specific needs of different industries U6488 MEMS High Precision Digital Output IMU Sensor U7000 High Precision MEMS IMU U300-A Digital Output High Performance MEMS IMU Sensor  
  • How to Calibrate an Electronic Compass
    How to Calibrate an Electronic Compass Mar 21, 2025
    Key Points Product: Electronic Compass Principle of Calibration: - Magnetic field ellipse fitting: Collect magnetic field data in all directions while rotating the device, calculate hard iron interference and soft iron interference parameters, and apply compensation to fit the magnetic field data into a sphere for improved accuracy. Calibration Methods: 1. Plane calibration: - XY plane calibration: Rotate the device in the XY plane to find the center point of the trajectory circle projected in that plane. - XZ plane calibration: Rotate the device in the XZ plane to obtain the trajectory circle of the Earth's magnetic field and calculate the magnetic field interference vector in 3D space. 2. Stereoscopic 8-shaped calibration: - Rotate the device in various directions in the air to collect sample points that fall on the surface of a sphere. Determine the center of the circle to determine the interference value and perform calibration. Calibration Steps: 1. Preparation of testing environment: - Stay away from interference sources. - Ensure horizontal placement and stable installation. 2. Enter calibration mode: - Manually trigger calibration through key combinations or software instructions. - Auto prompt calibration when magnetic field anomalies are detected. 3. Perform calibration operation: - Horizontal rotation (2D calibration): Slowly rotate the device around the vertical axis in a horizontal position. - Three-dimensional rotation (3D calibration): Rotate the device around the X, Y, and Z axes, covering at least 360° for each axis. 4. Verify the calibration results: - Compare the device readings with a known geographic direction. - Use software tools to observe directional stability and accuracy. - Repeat calibration if deviation exceeds the nominal error of the device. Advantages of Electronic Compass: - Real-time heading and attitude measurement. - Crucial navigation tool. - Improves directional accuracy through calibration. - Various calibration methods available. - Can be used in different applications and environments.   Electronic compass is an important navigation tool that can provide real-time heading and attitude of moving objects. Calibration of an electronic compass is a crucial step in ensuring the accuracy of its directional measurement.   1. Calibration principle of electronic compass The electronic compass determines direction by measuring the components of the geomagnetic field. The calibration process is actually "magnetic field ellipse fitting": a) Collect magnetic field data  in all directions when the device rotates. b) Generate compensation parameters by calculating hard iron interference (fixed offset) and soft iron interference (scaling and cross coupling) through algorithms. c) Automatically apply compensation during subsequent measurements to fit the magnetic field data into a sphere centered at the origin, improving directional accuracy.   2. Calibration method for electronic compass The calibration methods for electronic compasses mainly include two methods: planar calibration and three-dimensional 8-shaped calibration. (1) Plane calibration method For the calibration of the XY axis, the device equipped with a magnetic sensor will rotate on its own in the XY plane, which is equivalent to rotating the Earth's magnetic field vector around the normal passing point O(γx,γy) perpendicular to the XY plane. It represents the trajectory of the magnetic field vector projected in the XY plane during the rotation process. This can find the position of the center of the circle as (Xmax+Xmin)/2, (Ymax+Ymin)/2. Similarly, rotating the device in the XZ plane can obtain the trajectory circle of the Earth's magnetic field on the XZ plane, which can calculate the magnetic field interference vector γ (γx, γy, γz) in three-dimensional space. After calibration, the electronic compass can be used normally on the horizontal plane. However, due to the angle between the compass and the horizontal plane, this angle can affect the accuracy of the heading angle and requires tilt compensation through acceleration sensors. (2) Stereoscopic 8-shaped calibration method Usually, when a device with sensors rotates in various directions in the air, the spatial geometric structure composed of measured values is actually a sphere, and all sampling points fall on the surface of this sphere, as shown in the following figure.‌                a) Aerial rotation:  Use calibrated equipment to perform an 8-shaped movement in the air, aiming for the normal direction of the equipment to point towards all 8 quadrants of space. By obtaining sufficient sample points, the center O(γx,γy,γz) is determined, which is the size and direction of the fixed magnetic field interference vector. b) Sample point collection:  When rotating the device in various directions in the air, the spatial geometric structure composed of measurement values is actually a sphere, and all sampling points fall on the surface of this sphere. By using these sample points, the center of the circle can be determined to determine the hard magnetic interference value and perform calibration.   3. Calibration steps for electronic compass (1) Preparation of testing environment Ø Stay away from interference sources: Ensure that there are no large metal objects (such as iron cabinets, vehicles), motors, speakers, or other electromagnetic equipment within 3 meters of the calibration environment. Ø Horizontal placement: Use a level or built-in sensor to adjust to a horizontal state, ensuring that the measurement is based on the horizontal component of the geomagnetic field. Ø Fixed method: Avoid wearing metal watches or rings when holding the device; If it is an embedded device (such as a drone), ensure a stable installation. (2) Enter calibration mode a) Manual triggering: Refer to the product manual, common methods include: n Key combination (such as long pressing the power and function keys for 5 seconds). n Software instructions (select 'Calibrate Compass' through the accompanying app). b) Auto prompt: Some devices automatically prompt calibration when detecting magnetic field anomalies (such as continuously displaying "low precision").   (3) Perform calibration operation a) Horizontal rotation (2D calibration): n Slowly rotate the equipment around the vertical axis (Z-axis) and keep it horizontal. n Ensure uniform rotation speed (about 10 seconds/turn), complete at least 2 turns to cover all directions. b) Three-dimensional rotation (3D calibration, suitable for high-precision equipment): n Rotate around the X (roll), Y (pitch), and Z (yaw) axes in sequence, with each axis rotating at least 360 °. n Example action: After horizontal rotation, flip the device upright and then tilt it back and forth. (4) Verify the calibration results a) Direction comparison method: Point the device towards a known geographic direction (such as using a compass to determine true north) and check if the readings match. b) Software validation: Use map apps or professional tools (such as magnetic field analysis software) to observe directional stability and accuracy. c) Repeat calibration: If the deviation exceeds the nominal error of the equipment (such as ±3°), recalibration and environmental interference inspection are required.   C9-B High Precision CAN Protocol Output 2D Electronic Compass C9-A 40° Tilt Angle Compensation CAN Protocol Output 3D Electronic Compass C9-C High Precision Digital Output 2D Electronic Compass Single Board  
  • Testing Methods for Several Key Indicators of Fiber Optic Gyroscope | Zero Bias Stability, Scale Factor Nonlinearity & RWC Analysis
    Testing Methods for Several Key Indicators of Fiber Optic Gyroscope | Zero Bias Stability, Scale Factor Nonlinearity & RWC Analysis Mar 21, 2025
    Explore comprehensive testing methods for fiber optic gyroscope key indicators, including zero bias stability, scale factor nonlinearity, and random walk coefficient (RWC). Learn step-by-step procedures, formulas, and equipment requirements for precision navigation and attitude control applications. Fiber optic gyroscope is based on Sagna effect and is widely used for measuring angular velocity in navigation and attitude control. Key indicators typically include zero bias stability, scaling factor, random walk, bandwidth, noise, temperature characteristics, and so on. By measuring these indicators, the performance of fiber optic gyroscopes can be comprehensively evaluated, and system design and compensation algorithms can be optimized based on these data.   1. Zero Bias Series Testing 1.1 Bias Definition: The average equivalent angular velocity output of a fiber optic gyroscope when there is no angular velocity input. Test Equipment: horizontal reference device, fiber optic gyroscope output measurement recording device. Test method: Fix the fiber optic gyroscope on a horizontal reference, with the input axis (IRA) pointing in the east-west direction. Record output data for at least 1 hour after power on, with a sampling frequency that meets the Nyquist criterion (≥ 2 times the highest frequency of the signal). Calculation formula:                 Where K is the scaling factor, is the average output value.   1.2 Bias Stability Definition: The degree of dispersion of zero bias output around the mean reflects short-term stability. Test method: Same as bias test, but requires long-term data recording (at least 1 hour). Calculation formula:                   where:  : Zero bias stability, measured in degrees per hour (° ⁄ h) :  The single-sided amplitude output of the fiber optic gyroscope  at time .   1.3 Bias Repeatability Definition: Perform multiple power tests to ensure consistency of zero bias. Test method: Repeat the zero-bias test for more than 6 times, with power off and cooling to room temperature at intervals between each test. Calculation formula: For each test data, process it according to formula (1), calculate the zero bias, and then calculate the zero-bias repeatability of Q tests according to the following formula.                        Where,   :  Zero bias of the i-th test; :  Zero bias   1.4 Bias Temperature Sensitivity Definition: Zero bias drift caused by temperature changes. Test method: Set different temperature points (covering the working temperature range) inside the temperature control box, and maintain a constant temperature for 30 minutes at each temperature point. Measure the zero bias at each temperature point and calculate the deviation from the room temperature zero bias. Calculation formula: The test data is processed according to formula (1), and the zero bias of the fiber optic gyroscope at room temperature and each test temperature point is calculated separately. The zero bias temperature sensitivity of the fiber optic gyroscope is calculated according to the following formula:                             :The i-th test temperature.  :room temperature   2. Scale Factor Series Testing 2.1  Scale Factor Definition: Linear proportional relationship between output signal and input angular velocity Test equipment: high-precision rate turntable (error<1/3 of the tested gyroscope index) Test method: Select ≥ 11 angular velocity points (including the maximum input angular velocity) uniformly in both forward and reverse directions. Record the mean output of each point and fit a straight line using the least squares method. Calculation formula: Let be the average output of the fiber optic gyroscope at the jth input angular velocity, and the scaling factor calculation method is as follows:                                               The linear model for establishing the input-output relationship of fiber optic gyroscope is as follows:                     Using the least squares method to calculate K,                               Where ∅ is the rotational speed of the speed turntable, measured in degrees per second (° ⁄ s)   2.2 Scale factor nonlinearity Definition: Output the maximum deviation relative to the fitted line. Calculation formula: According to the above method, the input-output relationship of the fiber optic gyroscope is represented by fitting a straight line as follows:               Calculate the point-by-point nonlinear deviation of the output characteristics of the fiber optic gyroscope according to the following formula:                   Calculate the scaling factor linearity according to the following formula, and create the nonlinear deviation curve of the fiber optic gyroscope output (the horizontal axis represents the input angular velocity, and the vertical axis represents the nonlinear deviation)                   2.3 Scale factor temperature sensitivity Test method: Test the scaling factor at different temperature points and calculate the deviation caused by temperature changes. Calculation formula: The test data is processed according to the calculation method of scale factor, and the scale factor of the fiber optic gyroscope at room temperature and each test temperature point is calculated separately. The temperature sensitivity of the scale factor is calculated according to the following formula:                 3. Random Walk Coefficient (RWC) Definition: Integral angular velocity error caused by white noise output. Test method: Short time (tens of seconds) high-frequency sampling, analyze Allan variance. Formula for calculating Allan variance: a) There are n initial sample data of fiber optic gyroscope output values obtained at the initial sampling interval time . According to the calculation formula for gyroscope zero bias, the output angular velocity of each fiber optic gyroscope output value is calculated to obtain the initial sample data of output angular velocity, as shown in the following formula:               b) For continuous data of n initial samples, k continuous data are grouped together, and the time length of the array is set to , where τ equals , 2 ,  Calculate the average value of the array data for each time length. c) Find the average difference between two adjacent arrays:           d) Calculate the variance of a set of random variables:   …… (17) Repeat the above process with different values of, and obtain a curve in the double logarithmic coordinate system, which is called the Allan variance curve. Using the Allan variance model below, the coefficients are obtained through least squares fitting, and then the random walk coefficient RWC is calculated:                   Conclusion: The key indicator testing of fiber optic gyroscope is a bridge connecting research and development with practical applications. By quantitatively verifying performance, ensuring reliability, and meeting standard compliance, it ensures its "precision, stability, and usability" in military and civilian high-precision fields, while laying the foundation for technological innovation and cost optimization. GF2X64 Dual-Axis Low Precision Fiber Optic Gyroscope GF-60 Medium and Low Precision  Fiber Optic Gyroscope GF3G90 Tri-Axis Fiber Optic Gyroscope    
  • Principle and Application of Fiber Optic Gyroscope North Finder
    Principle and Application of Fiber Optic Gyroscope North Finder Feb 21, 2025
      Key Points Fiber Optic Gyroscope North Finder   Pros: High accuracy, shock resistance, low power consumption, no external reference neededCons: Requires precise calibration, sensitive to driftBest for: Harsh environments, precision navigation applications Conclusion: Ideal for determining true north in challenging conditions, offering reliable performance without requiring latitude information.   The north finder is a type of compass used to find the true north direction value of a certain location. The gyroscope north finder, also known as the gyroscope compass, is an inertial measurement system that uses the principle of gyroscope to determine the projection direction of the Earth's rotational angular velocity on the local horizontal plane (i.e. true north position). Its search for north does not require external reference.   Principle of Fiber Optic Gyroscope North Finder Fiber Optic Gyroscope (FOG) is a new type of all solid-state gyroscope based on Sagnac effect. It is an inertial measurement element without mechanical rotating parts, with advantages such as shock resistance, high sensitivity, long lifespan, low power consumption, and reliable integration. It is an ideal inertial device in the new generation of strapdown inertial navigation systems.   In fiber optic gyroscope based north finding applications, the majority of methods used involve FOG rotation at a fixed angle and calculating the angle relative to the north direction by determining the offset. In order to accurately point north, it is also necessary to eliminate the drift of FOG. Generally, a rotating platform as shown in Figure 1 is used to place the fiber optic gyroscope on a moving base, with the plane of the moving base parallel to the horizontal plane and the sensitive axis of the fiber optic gyroscope parallel to the plane of the moving base. When starting to search north, the gyroscope is in position 1, and its sensitive axis is parallel to the carrier. Assuming that the angle between the initial direction of the sensitive axis of the fiber optic gyroscope and the true north direction is α. The output value of the gyroscope at position 1 is ω1; Then rotate the base 90° and measure the output value of the gyroscope at position 2 as ω2. Rotate 90° twice in sequence, turning to positions 3 and 4 respectively, to obtain angular velocities ω3 and ω4.    Assuming the latitude of the measurement point is φ,The Earth's rotation is  , The angular velocity measured at position 1 is: Where  is the zero drift of the gyroscope output. Similarly, it can be concluded that: In a short period of time, assuming that the drift of the fiber optic gyroscope is a constant, that is: , Then:   By using this method for measurement, the zero bias of the gyroscope can be eliminated, and there is no need to know the latitude value of the measurement location. If the latitude of the measurement location is a known value, then only measuring positions 1 and 3 (or 2 and 4) can determine the heading angle.   Conclusion The fiber optic gyroscope north finder has a simple structure and excellent performance, especially able to resist impacts and various harsh environments. When the turntable is horizontal, it can provide the angle between the carrier and true north direction without inputting latitude values. In the case where the turntable is not strictly horizontal, the Earth's angular velocity measured by fiber optic gyroscope and the angle between the gyroscope and the horizontal plane measured by accelerometer are also used to calculate the angle between the baseline of the carrier and the true north direction through computer calculation. At the same time, the accelerometer can also measure the attitude angle of the north finder.   NF2000 inertial navigation system High Precision FOG North Seeker   NF3000 Inertial Navigation System High Performance Dynamic Fog North Seeker  
  • Should I choose quartz flexible accelerometer or MEMS accelerometer?
    Should I choose quartz flexible accelerometer or MEMS accelerometer? Feb 21, 2025
    Key Points Quartz Accelerometer Pros: High accuracy, stable, wide range, robust Cons: Larger, expensive, high power Best for: Precision applications (e.g., aerospace) MEMS Accelerometer Pros: Compact, low cost, low power Cons: Lower accuracy, limited range Best for: Consumer electronics, portable devices Conclusion Quartz: For high precision MEMS: For cost-effective, compact solutions Choosing between a quartz flexible accelerometer and a MEMS accelerometer depends on specific application requirements. Here are some key factors to consider:   1.       Quartz Flexible Accelerometer Advantages: 1)      High Accuracy and Stability: Quartz accelerometers are known for their high precision and long-term stability, making them suitable for applications requiring precise measurements over extended periods. 2)      Wide Dynamic Range: They can measure a wide range of accelerations, from very low to very high. 3)      Robustness: They are generally robust and can operate in harsh environments, including high temperatures and high vibration conditions. 4)      Low Noise: They typically have low noise levels, which is crucial for sensitive measurements.   Disadvantages: 1)      Size and Weight: Quartz accelerometers are generally larger and heavier compared to MEMS accelerometers. 2)      Cost: They are usually more expensive due to the complex manufacturing process and high-quality materials. 3)      Power Consumption: They tend to consume more power, which might be a concern for battery-operated devices.   2.       MEMS Accelerometer Advantages: 1)      Compact Size: MEMS accelerometers are small and lightweight, making them ideal for applications where space and weight are critical, such as in consumer electronics and portable devices. 2)      Low Cost: They are generally less expensive to produce, making them cost-effective for high-volume applications. 3)      Low Power Consumption: MEMS accelerometers consume less power, which is beneficial for battery-powered devices. 4)      Integration: They can be easily integrated with other electronic components on a single chip, enabling multifunctional devices.   Disadvantages: 1)      Lower Accuracy: MEMS accelerometers may have lower accuracy and stability compared to quartz accelerometers, especially over long periods. 2)      Limited Dynamic Range: They may not perform as well in measuring very high or very low accelerations. 3)      Environmental Sensitivity: They can be more sensitive to environmental factors such as temperature and vibration, which might affect performance.   3.       Application Considerations Ø  High-Precision Applications: If your application requires high precision, stability, and wide dynamic range (e.g., aerospace, defense, or seismic monitoring), a quartz flexible accelerometer might be the better choice. Ø  Consumer Electronics: For applications where size, weight, cost, and power consumption are critical (e.g., smartphones, wearables, IoT devices), a MEMS accelerometer is likely more suitable.   4.       Performance comparison Micro-Magic Inc provides a series of high-precision quartz accelerometers and a series of MEMS accelerometers. Taking quartz accelerometer AC-5B and MEMS accelerometer ACM-300-8 as examples, some typical parameter comparisons are as follows: Parameters AC-5 ACM-300 Measuring range ±50 g ±8 g Resolution <5μg <5 mg Bias <7 mg <50 mg Bias thermal coefficient < ±30μg/℃ 0.5 mg/℃ Scale factor thermal coefficient <50 ppm/℃ 100 ppm/℃ Bandwidth >300Hz 0~400 Hz   5.       Conclusion   Choose Quartz Flexible Accelerometer for high-precision, high-stability applications where size, weight, and cost are less critical. Choose MEMS Accelerometer for compact, cost-effective, low-power applications where high precision is not the primary concern. ACM-300 High Performance Industry Current type MEMS Accelerometer Sensor Factory   AC-5 Large Measurement Range 50g Quartz Pendulum Accelerometer Quartz Flex Accelerometer    
  • ¿Por qué se llama giroscopio de fibra óptica?
    ¿Por qué se llama giroscopio de fibra óptica? Jan 14, 2025
    Puntos claveProducto: Giroscopio de fibra óptica (FOG)Características clave:Componentes: Sensor de estado sólido que utiliza fibra óptica para mediciones inerciales precisas.Función: Aprovecha el efecto SAGNAC para una detección precisa de la velocidad angular sin piezas móviles.Aplicaciones: Adecuado para IMU, INS, buscadores de misiles, UAV y robótica.Fusión de datos: combina datos FOG con referencias externas para mejorar la precisión y la estabilidad.Conclusión: Los FOG proporcionan alta precisión y confiabilidad en las tareas de navegación, con desarrollos futuros prometedores en varios sectores.Al igual que el giroscopio láser de anillo, el giroscopio de fibra óptica tiene las ventajas de no tener piezas mecánicas móviles, no tener tiempo de precalentamiento, aceleración insensible, amplio rango dinámico, salida digital y tamaño pequeño. Además, el giroscopio de fibra óptica también supera las fatales deficiencias del giroscopio láser de anillo, como el alto costo y el fenómeno de bloqueo.El giroscopio de fibra óptica es un tipo de sensor de fibra óptica que se utiliza en la navegación inercial.Porque no tiene partes móviles: un rotor de alta velocidad, llamado giroscopio de estado sólido. Este nuevo giroscopio totalmente sólido se convertirá en el producto líder en el futuro y tiene una amplia gama de perspectivas de desarrollo y aplicaciones.1. Clasificación de giroscopios de fibra óptica.Según el principio de funcionamiento, el giroscopio de fibra óptica se puede dividir en giroscopio de fibra óptica interferométrica (I-FOG), giroscopio de fibra óptica resonante (R-FOG) y giroscopio de fibra óptica de dispersión Brillouin estimulado (B-FOG). En la actualidad, el giroscopio de fibra óptica más maduro es el giroscopio de fibra óptica interferométrica (es decir, la primera generación de giroscopio de fibra óptica), que es el más utilizado. Utiliza una bobina de fibra óptica de múltiples vueltas para mejorar el efecto SAGNAC. Un interferómetro de anillo de doble haz compuesto por una bobina de fibra óptica monomodo de múltiples vueltas puede proporcionar una alta precisión, pero también inevitablemente complicará la estructura general.Los giroscopios de fibra óptica se dividen en giroscopios de fibra óptica de anillo abierto y giroscopios de fibra óptica de bucle cerrado según el tipo de bucle. Giroscopio de fibra óptica de bucle abierto sin retroalimentación, detecta directamente la salida óptica, ahorra muchas estructuras ópticas y de circuitos complejos, tiene las ventajas de una estructura simple, precio económico, alta confiabilidad, bajo consumo de energía, la desventaja es que la linealidad de entrada-salida es pobre , pequeño rango dinámico, utilizado principalmente como sensor de ángulo. La estructura básica de un giroscopio de fibra óptica interferométrica de bucle abierto es un interferómetro de anillo de doble haz. Se utiliza principalmente en ocasiones en las que la precisión no es alta y el volumen es pequeño.2. Estado y futuro del giroscopio de fibra ópticaCon el rápido desarrollo del giroscopio de fibra óptica, muchas grandes empresas, especialmente las de equipos militares, han invertido enormes recursos financieros para estudiarlo. Las principales empresas de investigación de Estados Unidos, Japón, Alemania, Francia, Italia, Rusia, han completado la industrialización del giroscopio de baja y media precisión y Estados Unidos ha mantenido una posición de liderazgo en esta área de investigación.El desarrollo del giroscopio de fibra óptica todavía se encuentra en un nivel relativamente atrasado en nuestro país. Según el nivel de desarrollo, el desarrollo de giroscopios se divide en tres escalones: el primer escalón son los Estados Unidos, el Reino Unido y Francia, que tienen todas las capacidades de investigación y desarrollo de giroscopios y navegación inercial; El segundo nivel lo componen principalmente Japón, Alemania y Rusia; China se encuentra actualmente en el tercer nivel. La investigación del giroscopio de fibra óptica en China comenzó relativamente tarde, pero con los esfuerzos de la mayoría de los investigadores científicos, ha ido reduciendo gradualmente la brecha entre nosotros y los países desarrollados.En la actualidad, la cadena industrial de giroscopios de fibra óptica de China está completa y se pueden encontrar fabricantes en las fases anterior y posterior de la cadena industrial, y la precisión del desarrollo del giroscopio de fibra óptica ha alcanzado los requisitos de precisión media y baja del sistema de navegación inercial. Aunque el rendimiento es relativamente pobre, no provocará un cuello de botella como el chip.El desarrollo futuro del giroscopio de fibra óptica se centrará en los siguientes aspectos:(1) Alta precisión. Una mayor precisión es un requisito inevitable para que el giroscopio de fibra óptica reemplace al giroscopio láser en la navegación avanzada. En la actualidad, la tecnología giroscópica de fibra óptica de alta precisión no está completamente madura.(2) Alta estabilidad y antiinterferencias. La alta estabilidad a largo plazo es también una de las direcciones de desarrollo del giroscopio de fibra óptica, que puede mantener la precisión de la navegación durante mucho tiempo en entornos hostiles, es el requisito del sistema de navegación inercial para giroscopio. Por ejemplo, en el caso de altas temperaturas, fuertes terremotos, fuertes campos magnéticos, etc., el giroscopio de fibra óptica también debe tener suficiente precisión para cumplir con los requisitos de los usuarios.(3) Diversificación de productos. Es necesario desarrollar productos con diferente precisión y diferentes necesidades. Diferentes usuarios tienen diferentes requisitos de precisión de navegación, y la estructura del giroscopio de fibra óptica es simple, y solo es necesario ajustar la longitud y el diámetro de la bobina al cambiar la precisión. En este sentido, tiene la ventaja de superar al giroscopio mecánico y al giroscopio láser, y sus diferentes productos de precisión son más fáciles de lograr, lo cual es el requisito inevitable de la aplicación práctica del giroscopio de fibra óptica.(4) Escala de producción. La reducción de costos es también una de las condiciones previas para que los usuarios acepten el giroscopio de fibra óptica. La escala de producción de varios componentes puede promover eficazmente la reducción de los costos de producción, especialmente para los giroscopios de fibra óptica de precisión media y baja.3.ResumenLa estabilidad de polarización cero del giroscopio de fibra óptica F50 es de 0,1~0,3º/h, y la estabilidad de polarización cero del F60 es de 0,05~0,2º/h. Sus campos de aplicación son básicamente los mismos y se pueden utilizar en IMU pequeñas, INS, servoseguimiento de buscadores de misiles, cápsulas fotoeléctricas, UAV y otros campos de aplicación. Si desea más datos técnicos, no dude en contactarnos.GF50Giroscopio de fibra óptica estándar militar de precisión media de un solo eje GF60Velocidad Angular Imu del giroscopio de fibra óptica de baja potencia del giroscopio de fibra de un solo eje para navegación 
  • ¿Qué es MEMS INS asistido por GNSS y cómo funciona?
    ¿Qué es MEMS INS asistido por GNSS y cómo funciona? Jan 14, 2025
    Puntos claveProducto: MEMS INS asistido por GNSS I3500Características clave:Componentes: IMU MEMS rentable, módulo de posicionamiento por satélite de doble antena, magnetómetros y barómetro.Función: Proporciona datos de navegación de alta precisión, manteniendo el rendimiento durante interrupciones del GNSS.Aplicaciones: Adecuado para drones, navegación autónoma, topografía y análisis de movimiento.Navegación inercial: combina mediciones inerciales para el cálculo de posición, velocidad y actitud.Conclusión: El I3500 ejemplifica la integración de MEMS INS y GNSS, mejorando la confiabilidad y precisión de la navegación en varios sectores. La navegación integrada MINS/GNSS, se refiere a la fusión de información tanto del MINS (MEMS INS) como del GNSS (Sistema Global de Navegación por Satélite). Esta integración combina las fortalezas de ambos sistemas para complementarse entre sí y lograr resultados PVA (Posición, Velocidad, Actitud) precisos.Clasificación de sistemas de navegación inercial MEMSDespués de más de 30 años de desarrollo, la tecnología inercial MEMS ha avanzado rápidamente y ha tenido una amplia aplicación. Han surgido varios dispositivos inerciales MEMS prácticos y MEMS INS, que han encontrado un amplio uso en campos como las industrias aeroespacial, marítima y automotriz. Los giroscopios MEMS de grado táctico (con una estabilidad de polarización de 0,1°/h a 10°/h, 1σ) y los acelerómetros MEMS de alta precisión (con una estabilidad de polarización de 10⁻⁵g a 10⁻⁶g, 1σ) han marcado la entrada de la tecnología táctica. calificar MEMS INS en la etapa de aplicación del modelo.Generalmente, los sistemas inerciales MEMS se pueden clasificar en tres niveles: Conjunto de sensores inerciales (ISA), Unidad de medición inercial (IMU) y Sistema de navegación inercial (INS), como se ilustra en la Figura 1.Fig.1 Tres niveles de Mems Ins (2)MEMS ISA: Compuesto únicamente por tres giroscopios MEMS y tres acelerómetros MEMS, carece de la capacidad de operar de forma independiente.MEMS IMU: se basa en MEMS ISA agregando convertidores A/D, chips de procesamiento matemático y programas específicos, lo que le permite recopilar y procesar información inercial de forma independiente.MEMS INS: amplía aún más MEMS IMU incorporando transformación de coordenadas, procesos de filtrado y módulos auxiliares, que normalmente incluyen magnetómetros y placas receptoras GNSS. Los sensores auxiliares, como los magnetómetros, son particularmente importantes para ayudar a alinear MEMS INS y mejorar el rendimiento.Los tres modelos MEMS INS (Micro-Magic Inc-Mechanical System Inertial Navigation System) recientemente lanzados por Ericco, que se muestran en la imagen a continuación, son adecuados para aplicaciones en drones, registradores de vuelo, vehículos inteligentes no tripulados, posicionamiento y orientación de carreteras, detección de canales, vehículos de superficie no tripulados y vehículos submarinos.Fig.2 Los tres modelos Mems Ins recientemente lanzados por EriccoCómo funciona MEMS INS asistido por GNSSGNSS proporciona a los usuarios información de posición y hora absoluta de alta precisión y para todo clima, mientras que los sistemas de navegación inercial (INS) ofrecen alta resolución a corto plazo y gran autonomía. Sus características complementarias mejoran el rendimiento general: el INS puede aprovechar su alta precisión a corto plazo para proporcionar al GNSS información de navegación más continua y completa, mientras que el GNSS puede ayudar a estimar parámetros de error del INS como el sesgo, obteniendo así observaciones más precisas y reduciendo la deriva del INS.Fig.3 Tres niveles de Mems InsEspecíficamente, GNSS utiliza señales de satélites en órbita para calcular la posición, el tiempo y la velocidad. Siempre que la antena tenga una conexión de línea de visión con al menos cuatro satélites, la navegación GNSS logra una precisión excelente. Cuando la visibilidad del satélite se ve obstruida por obstáculos como árboles o edificios, la navegación se vuelve poco fiable o imposible.INS calcula los cambios de posición relativa a lo largo del tiempo utilizando información de velocidad angular y aceleración de la unidad de medición inercial (IMU). La IMU consta de seis sensores complementarios dispuestos en tres ejes ortogonales. Cada eje tiene un acelerómetro y un giroscopio. Los acelerómetros miden la aceleración lineal, mientras que los giroscopios miden la velocidad de rotación. Con estos sensores, la IMU puede medir con precisión su movimiento relativo en el espacio 3D.INS utiliza estas medidas para calcular la posición y la velocidad. Otra ventaja de las mediciones IMU es que proporcionan soluciones angulares alrededor de los tres ejes. INS convierte estas soluciones angulares en actitudes locales (alabeo, cabeceo y guiñada), proporcionando estos datos junto con la posición y la velocidad.Fig.4 Sistema de coordenadas corporales de la unidad de medida inercialReal-Time Kinematic (RTK) es un algoritmo maduro de posicionamiento de alta precisión de GNSS, capaz de lograr una precisión de nivel centimétrico en entornos abiertos. Sin embargo, en entornos urbanos complejos, las obstrucciones de la señal y las interferencias reducen la tasa de fijación de ambigüedades, lo que lleva a una disminución de la capacidad de posicionamiento. Por lo tanto, la investigación de los sistemas de posicionamiento integrados GNSS RTK e INS es crucial para campos como la navegación autónoma, la topografía y la cartografía y el análisis de movimiento.El I3500, recientemente lanzado por Micro-Magic Inc, es un MEMS INS rentable con ayuda de GNSS con una IMU MEMS altamente confiable y un módulo satelital direccional y de posicionamiento de banda completa de sistema completo de doble antena. También integra magnetómetros y un barómetro, que pueden calcular el tamaño del ángulo de actitud y ayudar al dron a navegar hasta la altitud deseada.ConclusiónLa integración de los sistemas de navegación inercial (INS) MEMS con la tecnología GNSS mejora significativamente la precisión de la navegación al combinar sus puntos fuertes. MEMS INS, con su rápido avance, ahora se usa ampliamente en las industrias aeroespacial, marítima y automotriz. GNSS proporciona un posicionamiento preciso, mientras que MEMS INS garantiza una navegación continua, incluso durante interrupciones del GNSS.El I3500 de Micro-Magic Inc ejemplifica esta integración, ofreciendo datos de navegación de alta precisión, ideales para navegación autónoma, topografía y análisis de movimiento.En resumen, la integración de GNSS y MEMS INS revoluciona la navegación al mejorar la precisión, la confiabilidad y la versatilidad en diversas aplicaciones. I3500Sistema de navegación inercial Mems Gyro I3500 de 3 ejes de alta precisión  
  • La estructura interna del buscador del norte.
    La estructura interna del buscador del norte. Jan 14, 2025
    Puntos claveProducto: Sistema de navegación inercial North FinderCaracterísticas clave:Componentes: utiliza giroscopios y acelerómetros para proporcionar mediciones inerciales precisas para la funcionalidad de búsqueda del norte.Función: Determina de forma rápida y precisa la dirección norte en todas las condiciones climáticas, independientemente de las señales externas.Aplicaciones: Adecuado tanto para usos militares como civiles que requieren una orientación autónoma y resistente a interferencias.Procesamiento de datos: Cuenta con software avanzado para la recopilación, el procesamiento y la corrección de errores de actitud de los datos del sensor.Modularidad: el software es modular para facilitar el desarrollo, las pruebas y el mantenimiento, lo que permite actualizaciones flexibles del sistema.La aparición del buscador de norte es un logro importante en el desarrollo de la tecnología de navegación inercial. Se usa ampliamente en campos militares y civiles mediante la configuración de sensores inerciales para formar un sistema de medición inercial de precisión, que puede detectar con precisión los parámetros de posición relevantes del portaaviones y proporcionar diversos recursos de información, como la posición coordinada, la orientación y la actitud del portaaviones con otros equipos.El buscador de norte es un instrumento inercial, tiene las ventajas generales de los instrumentos inerciales, es decir, el uso del principio de funcionamiento de inercia, no depende de información externa cuando funciona, no irradia energía al exterior, no estará sujeto a interferencias enemigas En el trabajo, no estará sujeto a sustancias de campo magnético ni a otras interferencias ambientales, buena resistencia ambiental, rendimiento superior en ambientes de alta y baja temperatura, es un sistema indicador de orientación autónomo. Puede determinar el norte de forma rápida y precisa en cualquier entorno climático.En el hardware del buscador de norte, la salida de la señal del sensor del giroscopio y el acelerómetro se filtra, se activa y se amplifica, y la señal analógica se convierte en señal digital mediante un convertidor A/D a la computadora de control del sistema de búsqueda de norte para su cálculo y procesamiento.Se puede decir que el software del buscador norte es el alma del sistema; sin el control del software, el hardware del sistema es prácticamente inútil y no puede reproducir su rendimiento. La parte de software controla el hardware de todo el sistema, establece el valor inicial, recopila datos periódicamente, una interfaz de interacción persona-computadora y proporciona una interfaz en serie y una interfaz de comunicación de red para realizar el intercambio de datos con el mundo exterior.El contenido principal del software North Finder incluye dos partes: una es el software de gestión, que hace que el hardware funcione según el programa predeterminado, como la inicialización de cada parte, la gestión de interrupciones en el proceso en ejecución, la gestión de la comunicación entre los sistema y la conexión externa; El segundo es el software de procesamiento de datos, que muestrea la información de cada sensor y procesa los datos muestreados para evitar la salida del resultado de búsqueda del norte.Sus tareas principales son: 1. Inicialización del sistema: incluida la selección de la posición inicial del sistema, el juicio de cierre de retroalimentación del giroscopio, la inicialización del muestreo A/D, etc.2. Control de transferencia del sistema: el software controla el motor para que gire según la posición predeterminada.3. Procesamiento de datos: muestreo A/D y preprocesamiento de datos; Cálculo de matrices de actitudes y corrección de errores; Visualización y salida, etc. Estas tareas están entrelazadas en el tiempo y dependen de la gestión de interrupciones para coordinarlas.En el diseño de North Finder, seguimos el principio básico de modularidad: el programa se divide en varios módulos, cada módulo establece una función y luego estos módulos juntos para formar un todo pueden completar la función especificada. Las ventajas de desarrollar módulos con funciones independientes y sin demasiada interacción entre módulos se muestran principalmente en: primero, el software de implementación modular es relativamente fácil de desarrollar. En segundo lugar, los módulos independientes son fáciles de probar y mantener, y pueden modificarse, reemplazarse o insertarse fácilmente en módulos nuevos cuando sea necesario.La empresa Micro-Magic Inc en la fabricación del buscador de norte ha dominado la tecnología especializada, en el software y hardware interno del sistema de navegación, la selección de Micro-Magic Inc son componentes inerciales rentables y de alto rendimiento, actualmente tiene un nuevo tipo de buscador de norte diferente. del tradicional buscador del norte, es nuestro NF2000, si está interesado en esto, bienvenido a comunicarse con nuestro personal profesional. NF2000Sistema de navegación inercial Buscador de norte de niebla de alta precisión  
  • Innovación técnica del buscador de norte en perforación direccional.
    Innovación técnica del buscador de norte en perforación direccional. Jan 14, 2025
    Puntos claveProducto: Buscador de norte giroscópico NF1000Características clave:Componentes: Utiliza un giroscopio y un acelerómetro flexible de cuarzo en un sistema de correa para una medición precisa del acimut.Función: Proporciona orientación y búsqueda del norte en tiempo real y en cualquier clima, calculando el acimut y el ángulo de inclinación para aplicaciones como la perforación direccional.Aplicaciones: Ideal para operaciones militares, exploración de petróleo y gas y proyectos de ingeniería en espacios confinados.Diseño compacto: Tamaño: Φ31,8 x 85 mm, Peso: 400 g, que ofrece portabilidad y adaptabilidad mejoradas.Rendimiento: funciones avanzadas como compensación de inclinación y autoalineación garantizan una orientación precisa y confiable en entornos difíciles.Conclusión: El NF1000 ofrece búsqueda y orientación del norte rápidas y precisas, lo que lo convierte en una herramienta valiosa para perforación direccional, navegación militar y otras aplicaciones de ingeniería.En orientación militar y civil, el buscador de norte se utiliza ampliamente. Puede determinar el norte en todo clima estático, en todas direcciones, rápido y en tiempo real, para determinar el acimut del portaaviones, es decir, el ángulo entre un eje de referencia del portaaviones y la dirección norte verdadera, que se utiliza. como referencia de azimut para observación, apuntamiento de objetivos y reinicio del sistema de navegación. También se puede utilizar como referencia de rumbo para operaciones subterráneas, como túneles y minas, en aplicaciones militares, que requieren especialmente que el buscador de norte giroscópico logre una orientación rápida y precisa en poco tiempo.1.Principios básicos de la búsqueda del norte.El buscador de norte utiliza el giroscopio para calcular el ángulo entre el portador y la dirección norte verdadera. Este sistema utiliza un giroscopio y un acelerómetro flexible de cuarzo para formar un sistema de sujeción. El eje sensible de un acelerómetro es paralelo al eje sensible del giroscopio. El otro es a lo largo del plano horizontal giroscopio ortogonal y acelerómetro para formar un conjunto inercial con respecto a la base de instalación alrededor del eje vertical de acuerdo con el comando del sistema de control rotación del conjunto alrededor del eje vertical se pueden resolver dos posiciones para medir la aceleración azimutal del conjunto inercial para compensar la componente vertical de la velocidad angular de rotación terrestre.2.Tecnología de perforación petroleraLa extracción y el desarrollo de petróleo son una industria que requiere alta inversión, alto riesgo, alto rendimiento, uso intensivo de tecnología y capital, y los errores operativos o de toma de decisiones causarán enormes pérdidas económicas y sociales.Con la mejora del nivel de exploración de petróleo y gas en tierra y mar, los tipos de yacimientos de petróleo y gas se han vuelto complicados y diversificados, la proporción de yacimientos de petróleo y gas de permeabilidad baja y ultrabaja ha aumentado año tras año, y la La profundidad del pozo ha evolucionado desde poco profunda y media hasta profunda e incluso ultraprofunda. Los tipos de yacimientos de petróleo y gas se extienden desde convencionales hasta no convencionales. El tipo sedimentario se expandió de continental a marino. Los trabajos de exploración y desarrollo han entrado en una etapa baja, profunda y difícil, lo que plantea nuevos desafíos para la explotación de petróleo y gas. En este caso, el uso continuo de la tecnología de pozos verticales no cubrirá las necesidades de la perforación moderna, por lo que surgió la tecnología de perforación direccional.La perforación direccional siempre se ha considerado “el proceso y la ciencia de desviar un pozo en una dirección específica para perforar hasta un objetivo subterráneo predeterminado”. Como lo muestra el buscador de norte direccional de perforación, el ángulo de acimut y el ángulo de inclinación son dos parámetros clave para el posicionamiento del pozo de perforación. Los índices clave de rendimiento del giroscopio y el acelerómetro se pueden probar y calibrar automáticamente utilizando el software integrado del buscador de norte giroscópico.Durante la construcción de la perforación, la plataforma de perforación llega al lugar de perforación designado. De acuerdo con el azimut y el ángulo de inclinación diseñados, el operador predeterminó aproximadamente la orientación y el ángulo de inclinación de la plataforma de perforación y luego colocó el instrumento de búsqueda del norte en el lugar horizontal cerca del sitio de perforación para la operación de búsqueda del norte; Una vez completada la búsqueda del norte, el buscador de norte se coloca en el riel guía del equipo para mostrar la información de la actitud actual del equipo (ángulo de inclinación y ángulo de azimut), y luego la actitud del equipo se ajusta hasta que el equipo alcanza el ángulo de diseño.De acuerdo con los problemas que encontramos en el proceso de estudio de perforación, lanzamos un nuevo buscador de norte con forma NF1000, especialmente para minería de petróleo, perforación direccional y otras aplicaciones de ingeniería, no solo logró un gran avance en apariencia, sino también en volumen y peso. Se ha mejorado mucho, su tamaño es de solo mm Φ31,8 x85 mm y el peso es de 400 g, lo que ha logrado un gran avance en los productos inerciales tradicionales de la serie North Finder. Su aparición permite que más ingenieros se enfrenten a entornos de monitoreo espacial más difíciles y limitados.3.ResumenEl buscador de norte de Micro-Magic Inc utiliza un sistema de correas. Para la deriva de desviación cero y el error aleatorio del buscador de norte, la empresa Micro-Magic Inc ha llevado a cabo muchas reformas técnicas del producto. En la actualidad, el último buscador de norte NF1000 no solo realiza funciones de compensación de inclinación y autoalineación, sino que también se puede utilizar en la sonda. Se facilita un espacio de seguimiento más limitado. Si está interesado en este producto, discútalo con nosotros. NF1000Sistema de navegación inercial MEMS dinámico de alto rendimiento Buscador de norte  
1 2 3 4 5 6
Un total de 6paginas
Subscibe To Newsletter
Continúe leyendo, manténgase informado, suscríbase y le invitamos a que nos cuente lo que piensa.
f y

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

Contáctenos