Hogar

blog

APLICACIONES

  • Investigación sobre el patrón de deriva de las constantes de los instrumentos del giroteodolito con la temperatura
    Investigación sobre el patrón de deriva de las constantes de los instrumentos del giroteodolito con la temperatura Jan 14, 2025
    Puntos claveProducto: Sistema de navegación inercial puro (INS) basado en IMUCaracterísticas clave:Componentes: Utiliza acelerómetros y giroscopios MEMS para medir en tiempo real la aceleración y la velocidad angular.Función: Integra datos de posición y actitud iniciales con mediciones de IMU para calcular la posición y actitud en tiempo real.Aplicaciones: Ideal para navegación en interiores, aeroespacial, sistemas autónomos y robótica.Desafíos: aborda errores de sensores, deriva acumulativa e impactos ambientales dinámicos con métodos de calibración y filtrado.Conclusión: Proporciona un posicionamiento preciso en entornos desafiantes, con un rendimiento sólido cuando se combina con sistemas de posicionamiento auxiliares como el GPS. La ley de la deriva constante del instrumento con la temperatura de un giroteodolito es un fenómeno complejo que implica la interacción de múltiples componentes y sistemas dentro del instrumento. La constante del instrumento se refiere al valor de referencia de medición del giroteodolito en condiciones específicas. Es fundamental garantizar la precisión y la estabilidad de las mediciones.Los cambios de temperatura provocarán la desviación de las constantes del instrumento, principalmente porque las diferencias en los coeficientes de expansión térmica de los materiales provocan cambios en la estructura del instrumento y el rendimiento de los componentes electrónicos cambia con los cambios de temperatura. Este patrón de deriva suele ser no lineal porque los diferentes materiales y componentes responden de manera diferente a la temperatura.Para estudiar la deriva de las constantes del instrumento de un giroteodolito con la temperatura, generalmente se requiere una serie de experimentos y análisis de datos. Esto incluye calibrar y medir el instrumento a diferentes temperaturas, registrar cambios en las constantes del instrumento y analizar la relación entre la temperatura y las constantes del instrumento.Mediante el análisis de datos experimentales, se puede encontrar la tendencia de las constantes del instrumento que cambian con la temperatura y se puede intentar establecer un modelo matemático para describir esta relación. Dichos modelos pueden basarse en regresión lineal, ajuste polinómico u otros métodos estadísticos y se utilizan para predecir y compensar la deriva en las constantes del instrumento a diferentes temperaturas.Comprender la deriva de las constantes del instrumento de un giroteodolito con la temperatura es muy importante para mejorar la precisión y la estabilidad de las mediciones. Al tomar las medidas de compensación correspondientes, como el control de temperatura, la calibración y el procesamiento de datos, se puede reducir el impacto de la temperatura en las constantes del instrumento, mejorando así el rendimiento de medición del giroteodolito.Cabe señalar que las reglas de deriva específicas y los métodos de compensación pueden variar según los diferentes modelos de giroteodolito y escenarios de aplicación. Por lo tanto, en aplicaciones prácticas, es necesario estudiar e implementar las medidas correspondientes según situaciones específicas.El estudio del patrón de deriva de las constantes del instrumento del giroteodolito con la temperatura generalmente implica monitorear y analizar el desempeño del instrumento en diferentes condiciones de temperatura.El propósito de dicha investigación es comprender cómo los cambios de temperatura afectan las constantes del instrumento de un giroteodolito y posiblemente encontrar una manera de compensar o corregir este efecto de temperatura.Las constantes instrumentales generalmente se refieren a las propiedades inherentes de un instrumento en condiciones específicas, como la temperatura estándar. Para el giroteodolito, las constantes del instrumento pueden estar relacionadas con su precisión de medición, estabilidad, etc.Cuando cambia la temperatura ambiente, las propiedades del material, la estructura mecánica, etc. dentro del instrumento pueden cambiar, afectando así las constantes del instrumento.Para estudiar este patrón de deriva, normalmente se requieren los siguientes pasos:Seleccione una gama de diferentes puntos de temperatura para cubrir los entornos operativos que puede encontrar un teodolito giroscópico.Tome múltiples mediciones direccionales en cada punto de temperatura para obtener suficientes muestras de datos.Analice los datos y observe la tendencia de las constantes del instrumento en función de la temperatura.Intente construir un modelo matemático para describir esta relación, como regresión lineal, ajuste polinomial, etc.Utilice este modelo para predecir constantes de instrumentos a diferentes temperaturas y posiblemente desarrollar métodos para compensar los efectos de la temperatura.Un modelo matemático podría verse así:K(T) = a + b × T + c × T^2 +…Entre ellos, K(T) es la constante del instrumento a temperatura T, y a, b, c, etc. son los coeficientes a ajustar.Este tipo de investigación es de gran importancia para mejorar el rendimiento del giroteodolito en diferentes condiciones ambientales.Cabe señalar que los métodos de investigación y los modelos matemáticos específicos pueden variar según los modelos de instrumentos y los escenarios de aplicación específicos.ResumirLa ley de la deriva constante del instrumento con la temperatura de un giroteodolito es un fenómeno complejo que implica la interacción de múltiples componentes y sistemas dentro del instrumento. La constante del instrumento se refiere al valor de referencia de medición del giroteodolito en condiciones específicas. Es fundamental garantizar la precisión y la estabilidad de las mediciones.Los cambios de temperatura provocarán la desviación de las constantes del instrumento, principalmente porque las diferencias en los coeficientes de expansión térmica de los materiales provocan cambios en la estructura del instrumento y el rendimiento de los componentes electrónicos cambia con los cambios de temperatura. Este patrón de deriva suele ser no lineal porque los diferentes materiales y componentes responden de manera diferente a la temperatura.Para estudiar la deriva de las constantes del instrumento de un giroteodolito con la temperatura, generalmente se requiere una serie de experimentos y análisis de datos. Esto incluye calibrar y medir el instrumento a diferentes temperaturas, registrar cambios en las constantes del instrumento y analizar la relación entre la temperatura y las constantes del instrumento.Mediante el análisis de datos experimentales, se puede encontrar la tendencia de las constantes del instrumento que cambian con la temperatura y se puede intentar establecer un modelo matemático para describir esta relación. Dichos modelos pueden basarse en regresión lineal, ajuste polinómico u otros métodos estadísticos y se utilizan para predecir y compensar la deriva en las constantes del instrumento a diferentes temperaturas.Comprender la deriva de las constantes del instrumento de un giroteodolito con la temperatura es muy importante para mejorar la precisión y la estabilidad de las mediciones. Al tomar las medidas de compensación correspondientes, como el control de temperatura, la calibración y el procesamiento de datos, se puede reducir el impacto de la temperatura en las constantes del instrumento, mejorando así el rendimiento de medición del giroteodolito.Cabe señalar que las reglas de deriva específicas y los métodos de compensación pueden variar según los diferentes modelos de giroteodolito y escenarios de aplicación. Por lo tanto, en aplicaciones prácticas, es necesario estudiar e implementar las medidas correspondientes según situaciones específicas.El estudio del patrón de deriva de las constantes del instrumento del giroteodolito con la temperatura generalmente implica monitorear y analizar el desempeño del instrumento en diferentes condiciones de temperatura.El propósito de dicha investigación es comprender cómo los cambios de temperatura afectan las constantes del instrumento de un giroteodolito y posiblemente encontrar una manera de compensar o corregir este efecto de temperatura.Las constantes instrumentales generalmente se refieren a las propiedades inherentes de un instrumento en condiciones específicas, como la temperatura estándar. Para el giroteodolito, las constantes del instrumento pueden estar relacionadas con su precisión de medición, estabilidad, etc.Cuando cambia la temperatura ambiente, las propiedades del material, la estructura mecánica, etc. dentro del instrumento pueden cambiar, afectando así las constantes del instrumento.Para estudiar este patrón de deriva, normalmente se requieren los siguientes pasos:Seleccione una gama de diferentes puntos de temperatura para cubrir los entornos operativos que puede encontrar un teodolito giroscópico.Tome múltiples mediciones direccionales en cada punto de temperatura para obtener suficientes muestras de datos.Analice los datos y observe la tendencia de las constantes del instrumento en función de la temperatura.Intente construir un modelo matemático para describir esta relación, como regresión lineal, ajuste polinomial, etc.Utilice este modelo para predecir constantes de instrumentos a diferentes temperaturas y posiblemente desarrollar métodos para compensar los efectos de la temperatura.Un modelo matemático podría verse así:K(T) = a + b × T + c × T^2 +…Entre ellos, K(T) es la constante del instrumento a temperatura T, y a, b, c, etc. son los coeficientes a ajustar.Este tipo de investigación es de gran importancia para mejorar el rendimiento del giroteodolito en diferentes condiciones ambientales.Cabe señalar que los métodos de investigación y los modelos matemáticos específicos pueden variar según los modelos de instrumentos y los escenarios de aplicación específicos. MG502Giroscopio MEMS MG502  
  • Investigación sobre la fusión segmentada del sistema de búsqueda de norte de pozo con giroscopio MEMS
    Investigación sobre la fusión segmentada del sistema de búsqueda de norte de pozo con giroscopio MEMS Jan 14, 2025
    Puntos claveProducto: Sistema de búsqueda de norte de pozo con giroscopio MEMSCaracterísticas clave:Componentes: Emplea giroscopios MEMS para la búsqueda del norte, con tamaño compacto, bajo costo y alta resistencia a los golpes.Función: Utiliza un método mejorado de dos posiciones (90° y 270°) y corrección de actitud en tiempo real para una determinación precisa del norte.Aplicaciones: Optimizado para sistemas de perforación de fondo de pozo en entornos subterráneos complejos.Fusión de datos: combina datos de giroscopio con correcciones de declinación magnética locales para el cálculo del norte verdadero, lo que garantiza una navegación precisa durante la perforación.Conclusión: Ofrece capacidades de búsqueda del norte precisas, confiables e independientes, ideales para pozos y aplicaciones similares.El nuevo giroscopio MEMS es un tipo de giroscopio inercial con estructura simple, que tiene las ventajas de bajo costo, tamaño pequeño y resistencia a vibraciones de alto impacto. El giroscopio inercial de búsqueda del norte puede completar la búsqueda independiente del norte en todas las condiciones climáticas sin restricciones externas y puede lograr un trabajo rápido, de alta eficiencia, alta precisión y continuo. Basado en las ventajas del giroscopio MEMS, el giroscopio MEMS es muy adecuado para el sistema de búsqueda del norte en el fondo del pozo. Este artículo describe la investigación de fusión segmentada del sistema de búsqueda del norte del pozo giroscópico MEMS. A continuación se presentará el hallazgo de norte mejorado de dos posiciones, el esquema del hallazgo de norte de fusión de pozo giroscópico MEMS y la determinación del valor de hallazgo de norte.Búsqueda de norte de dos posiciones mejoradaEl esquema estático de búsqueda del norte de dos posiciones generalmente selecciona 0° y 180° como posiciones inicial y final de la búsqueda del norte. Después de repetidos experimentos, se recopila la velocidad angular de salida del giroscopio y el ángulo final de búsqueda del norte se obtiene combinando la latitud local. El experimento adoptó el método de dos posiciones cada 10°, recopiló 360° del plato giratorio y se recopiló un total de 36 conjuntos de datos. Después de promediar cada conjunto de datos, los valores medidos de la solución se muestran en la Figura 1 a continuación.Figura 1 Curva de ajuste de la salida del giroscopio de 0 a 360°Como puede verse en la Figura 1, la curva de ajuste de salida es una curva coseno, pero los datos y ángulos experimentales aún son pequeños y los resultados experimentales carecen de precisión. Se realizaron experimentos repetidos y el ángulo de adquisición se extendió a 0 ~ 660°, y el método de dos posiciones se realizó cada 10° desde 0°, y los resultados de los datos se muestran en la Figura 2. La tendencia de la imagen es coseno curva, y hay diferencias obvias en la distribución de datos. En la cresta y el valle de la curva del coseno, la distribución de los puntos de datos está dispersa y el grado de ajuste a la curva es bajo, mientras que en el lugar con la pendiente más alta de la curva, el ajuste de los puntos de datos a la curva es mayor. obvio.Figura 2 Curva de ajuste de la salida del giroscopio en dos posiciones 0~660°Combinado con la relación entre el azimut y la amplitud de salida del giroscopio en la Figura 3, se puede concluir que el ajuste de los datos es mejor cuando se adopta el norte de dos posiciones a 90° y 270°, lo que indica que es más fácil y más preciso detectar el ángulo norte en dirección este-oeste. Por lo tanto, en este artículo se utilizan 90°, 270°, en lugar de 0° y 180°, como posiciones de adquisición de salida del giroscopio de dos posiciones hacia el norte.Figura 3 Relación entre el acimut y la amplitud de salida del giroscopioBúsqueda del norte de fusión de pozo con giroscopio MEMSCuando se utiliza el giroscopio MEMS en el sistema de búsqueda del norte de un pozo, se enfrenta a un entorno complejo y habrá un ángulo de actitud variable con la perforación con broca, por lo que la solución del ángulo norte se vuelve mucho más complicada. En esta sección, basado en la mejora del esquema de búsqueda de norte de dos posiciones en la sección anterior, se propone un método para obtener el ángulo de actitud controlando la rotación de acuerdo con la información de los datos de salida, y se obtiene el ángulo incluido con el norte. El diagrama de flujo específico se muestra en la Figura 4.El giroscopio MEMS se transmite a la computadora superior a través de la interfaz de datos RS232. Como se muestra en la Figura 4, después de obtener el ángulo norte inicial buscando el norte en las dos posiciones, se lleva a cabo el siguiente paso de perforación mientras se perfora. Después de recibir la instrucción del norte, se detiene el trabajo de perforación. El ángulo de actitud emitido por el giroscopio MEMS se recopila y transmite a la computadora superior. La rotación del sistema de búsqueda del norte del pozo está controlada por la información del ángulo de actitud, y el ángulo de balanceo y el ángulo de inclinación se ajustan a 0. El ángulo de rumbo en este momento es el ángulo entre el eje sensible y la dirección del norte magnético.En este esquema, el ángulo entre el giroscopio MEMS y la dirección norte verdadera se puede obtener en tiempo real recopilando información del ángulo de actitud.Figura 4 Diagrama de flujo de búsqueda del norte de FusionSe determina el valor de búsqueda del norte.En el esquema de búsqueda del norte de fusión, la búsqueda mejorada del norte de dos posiciones se realizó en el giroscopio MEMS. Una vez completado el hallazgo del norte, se obtuvo la posición norte inicial, se registró el ángulo de rumbo θ y el estado de actitud inicial fue (0,0, θ), como se muestra en la Figura 5 (a). Cuando la broca está perforando, el ángulo de actitud del giroscopio cambia y el ángulo de balanceo y el ángulo de paso son regulados por la mesa giratoria, como se muestra en la Figura 5(b).Como se muestra en la Figura 5 (b), al perforar la broca, el sistema recibe la información del ángulo de actitud del instrumento de actitud y necesita juzgar los tamaños del ángulo de balanceo γ 'y el ángulo de paso β', y rotarlos a través del control de rotación. sistema para hacerlos girar a 0. En este momento, los datos del ángulo del rumbo de salida son el ángulo entre el eje sensible y la dirección del norte magnético. El ángulo entre el eje sensible y la dirección del norte verdadero debe obtenerse de acuerdo con la relación entre el norte magnético y la dirección del norte verdadero, y el ángulo del norte verdadero debe obtenerse combinando el ángulo de declinación magnética local. La solución es la siguiente:θ’=Φ-∆φEn la fórmula anterior, θ 'broca y el ángulo de dirección norte verdadero, ∆φ es el ángulo de declinación magnética local, Φ es la broca y el ángulo norte magnético.Figura 5 Cambio de actitud inicial y de perforación ÁnguloSe determina el valor de búsqueda del norte.En este capítulo, se estudia el esquema de búsqueda del norte del sistema de búsqueda del norte subterráneo con giroscopio MEMS. Basado en el esquema de búsqueda del norte de dos posiciones, se propone un esquema mejorado de búsqueda del norte de dos posiciones con 90° y 270° como posiciones iniciales. Con el progreso continuo del giroscopio MEMS, el giroscopio de búsqueda de norte MEMS puede lograr una búsqueda de norte independiente, como el MG2-101, su rango de medición dinámica es de 100°/s, puede funcionar en un entorno de -40 °C ~+85 °C , su inestabilidad de polarización es de 0,1 °/h y el recorrido aleatorio con velocidad angular es de 0,005 °/√ h.Espero que pueda comprender el esquema de búsqueda del norte del giroscopio MEMS a través de este artículo y espero poder discutir temas profesionales con usted. MG502Giroscopio MEMS MG502  
  • Investigación sobre chip óptico integrado híbrido de giroscopio de fibra óptica
    Investigación sobre chip óptico integrado híbrido de giroscopio de fibra óptica Jan 14, 2025
    Puntos claveProducto: Giroscopio de fibra óptica basado en chip óptico integradoCaracterísticas clave:Componentes: utiliza un chip óptico integrado que combina funciones como luminiscencia, división del haz, modulación y detección en una plataforma de película delgada de niobato de litio (LNOI).Función: logra la integración "multi-en-uno" de funciones de ruta óptica no sensibles, lo que reduce el tamaño y los costos de producción al tiempo que mejora la polarización y la modulación de fase para un rendimiento preciso del giroscopio.Aplicaciones: Adecuado para posicionamiento, navegación, control de actitud y medición de inclinación de pozos petroleros.Optimización: mejoras adicionales en la relación de extinción de la polarización, la potencia de emisión y la eficiencia del acoplamiento pueden mejorar la estabilidad y la precisión.Conclusión: Este diseño integrado allana el camino para giroscopios de fibra óptica miniaturizados y de bajo costo, que satisfacen la creciente demanda de soluciones de navegación inercial compactas y confiables.Con las ventajas de estado totalmente sólido, alto rendimiento y diseño flexible, el giroscopio de fibra óptica se ha convertido en el giroscopio inercial principal, que se usa ampliamente en muchos campos como posicionamiento y navegación, control de actitud y medición de inclinación de pozos petroleros. En la nueva situación, la nueva generación de sistemas de navegación inercial se está desarrollando hacia la miniaturización y el bajo costo, lo que plantea requisitos cada vez más altos para el rendimiento integral del giroscopio, como volumen, precisión y costo. En los últimos años, el giroscopio resonador hemisférico y el giroscopio MEMS se han desarrollado rápidamente con la ventaja de su tamaño pequeño, lo que tiene un cierto impacto en el mercado de giroscopios de fibra óptica. El principal desafío de la reducción del volumen del giroscopio óptico tradicional es la reducción del volumen del camino óptico. En el esquema tradicional, la ruta óptica del giroscopio de fibra óptica se compone de varios dispositivos ópticos discretos, cada uno de los cuales se realiza en base a diferentes principios y procesos y tiene empaquetamiento y pigtail independientes. Como resultado, el volumen del dispositivo según la técnica anterior está cerca del límite de reducción y es difícil soportar una reducción adicional del volumen del giroscopio de fibra óptica. Por lo tanto, es urgente explorar nuevas soluciones técnicas para lograr la integración efectiva de diferentes funciones de la ruta óptica, reducir en gran medida el volumen de la ruta giroóptica, mejorar la compatibilidad del proceso y reducir el costo de producción del dispositivo.Con el desarrollo de la tecnología de circuitos integrados de semiconductores, la tecnología óptica integrada ha logrado avances gradualmente, el tamaño de las características se ha reducido continuamente y ha entrado en el nivel micro y nano, lo que ha promovido en gran medida el desarrollo técnico de los chips ópticos integrados y ha Se ha aplicado en comunicación óptica, computación óptica, detección óptica y otros campos. La tecnología óptica integrada proporciona una solución técnica nueva y prometedora para la miniaturización y el bajo costo de la ruta giroóptica de fibra óptica.1 Diseño de esquema de chip óptico integrado1.1 Diseño generalLa fuente de luz de enrutamiento óptico tradicional (SLD o ASE), acoplador cónico de fibra (denominado "acoplador"), modulador de fase de guía de onda de rama Y (denominado "modulador de guía de onda Y"), detector, anillo sensible (anillo de fibra). Entre ellos, el anillo sensible es la unidad central de la tasa de ángulo sensible y su tamaño de volumen afecta directamente la precisión del giroscopio.Proponemos un chip integrado híbrido, que consta de un componente fuente de luz, un componente multifuncional y un componente de detección mediante integración híbrida. Entre ellos, la parte de la fuente de luz es un componente independiente, que se compone de un chip SLD, un componente de colimación de aislamiento y componentes periféricos como un disipador de calor y un enfriador de semiconductores. El módulo de detección consta de un chip de detección y un chip amplificador de transresistencia. El módulo multifuncional es el cuerpo principal del chip híbrido integrado, que se basa en un chip de película delgada de niobato de litio (LNOI), e incluye principalmente guía de onda óptica, conversión de modo-punto, polarizador, divisor de haz, atenuador de modo, modulador y otros. estructuras de chips. El haz emitido por el chip SLD se transmite a la guía de ondas LNOI después del aislamiento y la colimación.El polarizador desvía la luz de entrada y el atenuador de modo atenúa el modo que no funciona. Después de que el divisor de haz divide el haz y el modulador modula la fase, el chip de salida ingresa al anillo sensible y a la velocidad angular sensible. La intensidad de la luz es capturada por el chip detector y la salida fotoeléctrica generada fluye a través del chip amplificador de transresistencia hasta el circuito de demodulación.El chip óptico integrado híbrido tiene las funciones de luminiscencia, división de haz, combinación de haz, desviación, modulación, detección, etc. Realiza la integración "multi-en-uno" de funciones no sensibles de la trayectoria giroóptica. Los giroscopios de fibra óptica dependen de la sensibilidad del ángulo del haz coherente con un alto grado de polarización, y el rendimiento de la polarización afecta directamente la precisión de los giroscopios. El modulador de guía de ondas Y tradicional en sí es un dispositivo integrado que tiene las funciones de desviación, división y combinación de haces y modulación. Gracias a los métodos de modificación de materiales, como el intercambio de protones o la difusión de titanio, los moduladores de guía de ondas Y tienen una capacidad de deflexión extremadamente alta. Sin embargo, los materiales de película delgada deben tener en cuenta los requisitos de tamaño, integración y capacidad de deflexión, que no pueden cumplirse mediante métodos de modificación de materiales. Por otro lado, el campo modal de la guía de ondas óptica de película delgada es mucho más pequeño que el de la guía de ondas óptica de material a granel, lo que resulta en cambios en la distribución del campo electrostático y en los parámetros del índice electrorefractivo, y es necesario rediseñar la estructura del electrodo. Por lo tanto, el polarizador y el modulador son los puntos centrales de diseño del chip "todo en uno".1.2 Diseño específicoLas características de polarización se obtienen mediante polarización estructural y se diseña un polarizador en chip, que consta de una guía de ondas curva y una guía de ondas recta.Acordado. La guía de ondas curva puede limitar la diferencia entre el modo de transmisión y el modo de no transmisión y lograr el efecto de polarización del modo. La pérdida de transmisión del modo de transmisión se reduce estableciendo el desplazamiento.Las características de transmisión de la guía de ondas ópticas se ven afectadas principalmente por la pérdida por dispersión, la fuga de modo, la pérdida de radiación y la pérdida por desajuste de modo. Teóricamente, la pérdida por dispersión y la fuga de modo de las guías de ondas curvas pequeñas son pequeñas, y están limitadas principalmente por el proceso tardío. Sin embargo, la pérdida de radiación de las guías de ondas curvas es inherente y tiene diferentes efectos en diferentes modos. Las características de transmisión de la guía de onda curva se ven afectadas principalmente por la pérdida por desajuste de modo, y existe una superposición de modo en la unión de la guía de onda recta y la guía de onda curva, lo que resulta en un fuerte aumento en la dispersión de modo. Cuando la onda de luz se transmite a la guía de ondas polarizada, debido a la existencia de curvatura, el índice de refracción efectivo del modo de onda de luz es diferente en la dirección vertical y en la dirección paralela, y la restricción del modo es diferente, lo que resulta en una atenuación diferente. efectos para los modos TE y TM.Por lo tanto, es necesario diseñar los parámetros de la guía de ondas de flexión para lograr el rendimiento de deflexión. Entre ellos, el radio de curvatura es el parámetro clave de la guía de ondas de curvatura. La pérdida de transmisión bajo diferentes radios de curvatura y la comparación de pérdidas entre diferentes modos se calculan mediante el solucionador de modo propio FDTD. Los resultados calculados muestran que la pérdida de la guía de ondas disminuye con el aumento del radio en radios de curvatura pequeños. Sobre esta base, se calcula la relación entre la propiedad de polarización (relación entre el modo TE y el modo TM) y el radio de curvatura, y la propiedad de polarización es inversamente proporcional al radio de curvatura. La determinación del radio de curvatura del polarizador en chip debe considerar el cálculo teórico, los resultados de la simulación, la capacidad tecnológica y la demanda real.El dominio del tiempo de diferencias finitas (FDTD) se utiliza para simular el campo de luz transmitida del polarizador en el chip. El modo TE puede atravesar la estructura de la guía de ondas con baja pérdida, mientras que el modo TM puede producir una atenuación de modo obvia, para obtener luz polarizada con una alta tasa de extinción. Al aumentar el número de guías de ondas en cascada, se puede mejorar aún más la relación de extinción de la relación de extinción de polarización y se puede obtener un rendimiento de la relación de extinción de polarización superior a -35 dB en la escala de micras. Al mismo tiempo, la estructura de la guía de ondas en el chip es simple y es fácil realizar la fabricación de bajo costo del dispositivo.2 Verificación del rendimiento del chip óptico integradoEl chip principal LNOI del chip óptico integrado es una muestra sin cortar grabada con múltiples estructuras de chip, y el tamaño de un único chip principal LNOI es de 11 mm × 3 mm. La prueba de rendimiento del chip óptico integrado incluye principalmente la medición de la relación espectral, la relación de extinción de polarización y el voltaje de media onda.Basado en el chip óptico integrado, se construye un prototipo de giroscopio y se lleva a cabo la prueba de rendimiento del chip óptico integrado. Rendimiento estático de polarización cero de un prototipo de giroscopio basado en un chip óptico integrado en una base aislada sin vibraciones a temperatura ambiente. basado en conjuntosEl giroscopio formado en un chip óptico tiene una deriva prolongada en el segmento de arranque, lo que se debe principalmente a las características de arranque de la fuente de luz y a la gran pérdida del enlace óptico. En la prueba de 90 minutos, la estabilidad de polarización cero del giroscopio es de 0,17°/h (10 s). En comparación con el giroscopio basado en dispositivos discretos tradicionales, el índice de estabilidad de polarización cero se deteriora en un orden de magnitud, lo que indica que el chip óptico integrado debe optimizarse aún más. Direcciones principales de optimización: mejorar la relación de extinción de polarización del chip, mejorar la potencia luminosa del chip emisor de luz, mejorar la eficiencia del acoplamiento final del chip y reducir la pérdida general del chip integrado.3 ResumenProponemos un chip óptico integrado basado en LNOI, que puede realizar la integración de funciones no sensibles como luminiscencia, división de haz, combinación de haz, desviación, modulación y detección. La estabilidad de polarización cero del prototipo de giroscopio basado en el chip óptico integrado es de 0,17°/h. En comparación con los dispositivos discretos tradicionales, el rendimiento del chip todavía tiene una cierta brecha, que debe optimizarse y mejorarse aún más. Exploramos preliminarmente la viabilidad de funciones de ruta óptica totalmente integradas, excepto el anillo, que pueden maximizar el valor de la aplicación del chip óptico integrado en el giroscopio y satisfacer las necesidades de desarrollo de miniaturización y bajo costo del giroscopio de fibra óptica.GF50Giroscopio de fibra óptica estándar militar de precisión media de un solo eje GF60Velocidad Angular Imu del giroscopio de fibra óptica de baja potencia del giroscopio de fibra de un solo eje para navegación 
  • Cálculo de posición de datos de navegación inercial puros (IMU)
    Cálculo de posición de datos de navegación inercial puros (IMU) Jan 14, 2025
    Puntos claveProducto: Sistema de navegación inercial puro (INS) basado en IMUCaracterísticas clave:Componentes: Utiliza acelerómetros y giroscopios MEMS para medir en tiempo real la aceleración y la velocidad angular.Función: Integra datos de posición y actitud iniciales con mediciones de IMU para calcular la posición y actitud en tiempo real.Aplicaciones: Ideal para navegación en interiores, aeroespacial, sistemas autónomos y robótica.Desafíos: aborda errores de sensores, deriva acumulativa e impactos ambientales dinámicos con métodos de calibración y filtrado.Conclusión: Proporciona un posicionamiento preciso en entornos desafiantes, con un rendimiento sólido cuando se combina con sistemas de posicionamiento auxiliares como el GPS. El cálculo de posición de datos inerciales puros (IMU) es una tecnología de posicionamiento común. Calcula el objeto objetivo en tiempo real utilizando la información de aceleración y velocidad angular obtenida por la Unidad de Medición Inercial (IMU), combinada con la información de posición y actitud inicial. s posición. Este artículo presentará los principios, escenarios de aplicación y algunos desafíos técnicos relacionados del cálculo de posición de datos de navegación inercial pura.1. Principio de cálculo de posición basado en datos de navegación inercial purosEl cálculo de posición de datos de navegación inercial puro es un método de posicionamiento basado en el principio de medición inercial. IMU es un sensor que integra un acelerómetro y un giroscopio. Midiendo la aceleración y la velocidad angular del objeto objetivo en tres direcciones, se puede derivar la información de posición y actitud del objeto objetivo.En el cálculo de posición de datos de navegación inercial puro, primero es necesario obtener la posición inicial y la información de actitud del objeto objetivo. Esto se puede conseguir introduciendo otros sensores (como GPS, brújula, etc.) o calibración manual. La posición inicial y la información de actitud juegan un papel importante en el proceso de solución. Proporcionan un punto de partida para que los datos de aceleración y velocidad angular medidos por la IMU puedan convertirse en los cambios reales de desplazamiento y actitud del objeto objetivo.Luego, basándose en los datos de aceleración y velocidad angular medidos por la IMU, combinados con la información de posición y actitud inicial, se pueden utilizar algoritmos de filtrado o integración numérica para calcular la posición del objeto objetivo en tiempo real. El método de integración numérica obtiene la velocidad y el desplazamiento del objeto objetivo discretizando e integrando los datos de aceleración y velocidad angular. El algoritmo de filtrado utiliza métodos como el filtrado de Kalman o el filtrado de Kalman extendido para filtrar los datos medidos por la IMU y obtener la estimación de posición y actitud del objeto objetivo.2. Escenarios de aplicación del cálculo de posición de datos de navegación inercial purosEl cálculo de posición basado en datos de navegación inercial puros se utiliza ampliamente en muchos campos. Entre ellos, la navegación en interiores es uno de los escenarios de aplicación típicos para el cálculo de posición de datos de navegación inercial pura. En ambientes interiores, las señales de GPS generalmente no pueden llegar, y el cálculo de posición de datos de navegación inercial pura puede utilizar los datos medidos por IMU para lograr un posicionamiento preciso de los objetos objetivo en interiores. Esto es de gran importancia en campos como la conducción autónoma y los robots de navegación en interiores.El cálculo de posición de datos de navegación inercial puros también se puede utilizar en el campo aeroespacial. En los aviones, dado que la señal GPS puede verse interferida a grandes altitudes o lejos del suelo, el cálculo de posición de datos de navegación inercial pura se puede utilizar como método de posicionamiento de respaldo. Puede calcular la posición y actitud de la aeronave en tiempo real a través de los datos medidos por la IMU y proporcionarlos al sistema de control de vuelo para la estabilización de la actitud y la planificación de la trayectoria de vuelo.3. Desafíos del cálculo de posición utilizando datos de navegación inercial purosEl cálculo de posición basado en datos de navegación inercial puros todavía enfrenta algunos desafíos en aplicaciones prácticas. En primer lugar, el propio sensor IMU tiene errores y ruido, lo que afectará la precisión del posicionamiento. Para mejorar la precisión de la solución, es necesario calibrar el sensor IMU y compensar el error, y se utiliza un algoritmo de filtrado adecuado para reducir el error.El cálculo de posición basado en datos de navegación inercial puros es propenso a errores acumulativos durante movimientos a largo plazo. Debido a las características de la operación de integración, incluso si la precisión de medición del sensor IMU es alta, la integración a largo plazo provocará la acumulación de errores de posicionamiento. Para resolver este problema, se pueden introducir otros medios de posicionamiento (como GPS, sensores visuales, etc.) para el posicionamiento auxiliar, o se puede utilizar un método de navegación inercial estrechamente acoplado.El cálculo de posición basado en datos de navegación inercial pura también debe considerar el impacto del entorno dinámico. En un entorno dinámico, el objeto objetivo puede verse afectado por fuerzas externas, provocando desviaciones en los datos medidos por la IMU. Para mejorar la solidez de la solución, los efectos de los entornos dinámicos se pueden compensar mediante métodos como la estimación del movimiento y la calibración dinámica.ResumirEl cálculo de posición de datos inerciales puros es un método de posicionamiento basado en la medición IMU. Al adquirir datos de aceleración y velocidad angular, combinados con información de posición y actitud inicial, la posición y actitud del objeto objetivo se calculan en tiempo real. Tiene amplias aplicaciones en navegación interior, aeroespacial y otros campos. Sin embargo, el cálculo de posición de datos de navegación inercial puros también enfrenta desafíos como errores de calibración, errores acumulativos y entornos dinámicos. Para mejorar la precisión y robustez de la solución, es necesario adoptar métodos de calibración, algoritmos de filtrado y métodos de posicionamiento auxiliares adecuados. El MEMS IMU desarrollado independientemente por Micro-Magic Inc tiene una precisión relativamente alta, como el UF300A y el UF300B, que tienen mayor precisión y son productos de calidad para navegación. Si desea saber más sobre IMU, comuníquese con nuestros técnicos profesionales lo antes posible. UF300Unidad de medida inercial miniaturizada de alta precisión Unidad de medida inercial de fibra óptica -
  • Análisis de precisión de la detección de deformación de estructuras de ingeniería giroscópica de fibra óptica
    Análisis de precisión de la detección de deformación de estructuras de ingeniería giroscópica de fibra óptica Jan 13, 2025
    Puntos claveProducto: Sistema de detección de deformaciones basado en giroscopio de fibra ópticaCaracterísticas clave:Componentes: Incorpora giroscopios de fibra óptica de alta precisión para medición de velocidad angular y cálculo de trayectoria.Función: Combina datos giroscópicos con mediciones de distancia para detectar deformaciones estructurales con alta precisión.Aplicaciones: Adecuado para ingeniería civil, monitoreo del estado estructural y análisis de deformaciones en puentes, edificios y otras infraestructuras.Rendimiento: logra una precisión de detección de deformación superior a 10 μm a una velocidad de carrera de 2 m/s utilizando giroscopios de precisión media.Ventajas: Diseño compacto, peso ligero, bajo consumo de energía y operación fácil de usar para facilitar la implementación.Conclusión:Este sistema proporciona mediciones de deformación precisas y confiables, ofreciendo valiosas soluciones para las necesidades de análisis estructural y de ingeniería.1 Método de detección de deformaciones de estructuras de ingeniería basado en giroscopio de fibra ópticaEl principio del método de detección de deformación de estructuras de ingeniería basado en giroscopio de fibra óptica es fijar el giroscopio de fibra óptica al dispositivo de detección, medir la velocidad angular del sistema de detección cuando se ejecuta sobre la superficie medida de la estructura de ingeniería, medir la distancia operativa de el dispositivo de detección y calcular la trayectoria operativa del dispositivo de detección para realizar la detección de la deformación de la estructura de ingeniería. Este método se denomina método de trayectoria en este artículo. Este método puede describirse como "navegación en plano bidimensional", es decir, la posición del soporte se resuelve en la superficie vertical de la superficie de la estructura medida y finalmente se obtiene la trayectoria del soporte a lo largo de la superficie de la estructura medida.Según el principio del método de trayectoria, sus principales fuentes de error incluyen el error de referencia, el error de medición de la distancia y el error de medición del ángulo. El error de referencia se refiere al error de medición del ángulo de inclinación inicial θ0, el error de medición de la distancia se refiere al error de medición de ΔLi y el error de medición del ángulo se refiere al error de medición de Δθi, que es causado principalmente por el error de medición del Velocidad angular del giroscopio de fibra óptica. Este artículo no considera la influencia del error de referencia y el error de medición de distancia en el error de detección de deformación, solo se analiza el error de detección de deformación causado por el error del giroscopio de fibra óptica.2 Análisis de la precisión de la detección de deformaciones basado en giroscopio de fibra óptica2.1 Modelado de errores del giroscopio de fibra óptica en aplicaciones de detección de deformacionesEl giroscopio de fibra óptica es un sensor para medir la velocidad angular basado en el efecto Sagnac. Después de que la luz emitida por la fuente de luz pasa a través de la guía de ondas Y, se forman dos haces de luz que giran en direcciones opuestas en el anillo de fibra. Cuando el portador gira con respecto al espacio inercial, hay una diferencia de trayectoria óptica entre los dos haces de luz, y la señal de interferencia óptica relacionada con la velocidad angular de rotación se puede detectar en el extremo del detector, para medir la velocidad diagonal.La expresión matemática de la señal de salida del giroscopio de fibra óptica es: F=Kw+B0+V. Donde F es la salida del giroscopio, K es el factor de escala y ω es la salida del giroscopio.La entrada de velocidad angular en el eje sensible, B0 es la polarización giroscópica cero, υ es el término de error integrado, incluido el ruido blanco y los componentes que varían lentamente causados por varios ruidos con un tiempo de correlación prolongado, υ también puede considerarse como el error de polarización cero. .Las fuentes de error de medición del giroscopio de fibra óptica incluyen el error del factor de escala y el error de desviación cero. En la actualidad, el error del factor de escala del giroscopio de fibra óptica aplicado en ingeniería es 10-5~10-6. En la aplicación de detección de deformación, la entrada de velocidad angular es pequeña y el error de medición causado por el error del factor de escala es mucho menor que el causado por el error de desviación cero, que puede ignorarse. El componente de CC del error de polarización cero se caracteriza por la repetibilidad de polarización cero Br, que es la desviación estándar del valor de polarización cero en múltiples pruebas. El componente de CA se caracteriza por una estabilidad de polarización cero Bs, que es la desviación estándar del valor de salida del giroscopio de su media en una prueba, y su valor está relacionado con el tiempo de muestreo del giroscopio.2.2 Cálculo del error de deformación basado en giroscopio de fibra ópticaTomando como ejemplo el modelo de viga apoyada simple, se calcula el error de detección de deformación y se establece el modelo teórico de deformación estructural. Sobre esta base se establece la detección.Según la velocidad de funcionamiento y el tiempo de muestreo del sistema, se puede obtener la velocidad angular teórica del giroscopio de fibra óptica. Luego, el error de medición de la velocidad angular del giroscopio de fibra óptica se puede simular de acuerdo con el modelo de error de desviación cero del giroscopio de fibra óptica establecido anteriormente.2.3 Ejemplo de cálculo de simulaciónLa configuración de simulación de la velocidad de carrera y el tiempo de muestreo adopta un modo de variación de rango, es decir, el ΔLi pasado por cada tiempo de muestreo es fijo y el tiempo de muestreo del mismo segmento de línea cambia cambiando la velocidad de carrera. Por ejemplo, cuando ΔLi es 1 mm, como cuando la velocidad de carrera es 2 m/s, el tiempo de muestreo es 0,5 ms. Si la velocidad de funcionamiento es de 0,1 m/s, el tiempo de muestreo es de 10 ms.3 Relación entre el rendimiento del giroscopio de fibra óptica y el error de medición de la deformaciónEn primer lugar, se analiza el efecto del error de repetibilidad con polarización cero. Cuando no hay un error de estabilidad de polarización cero, el error de medición de la velocidad angular causado por el error de polarización cero es fijo, por ejemplo, cuanto más rápida sea la velocidad de movimiento, más corto será el tiempo total de medición, menor será el impacto del error de polarización cero y menor será la deformación. error de medición. Cuando la velocidad de carrera es rápida, el error de estabilidad de polarización cero es el factor principal que causa el error de medición del sistema. Cuando la velocidad de funcionamiento es baja, el error de repetibilidad de polarización cero se convierte en la principal fuente del error de medición del sistema.Utilizando un índice giroscópico de fibra óptica de precisión media típico, es decir, la estabilidad de polarización cero es de 0,5 °/h cuando el tiempo de muestreo es de 1 s, la repetibilidad cero es de 0,05 °/h. Compare los errores de medición del sistema a la velocidad de funcionamiento de 2 m/s, 1 m/s, 0,2 m/s, 0,1 m/s, 0,02 m/s, 0,01 m/s, 0,002 m/s y 0,001 m/s. Cuando la velocidad de funcionamiento es de 2 m/s, el error de medición es de 8,514 μm (RMS), cuando la velocidad de medición se reduce a 0,2 m/s, el error de medición es de 34,089 μm (RMS), cuando la velocidad de medición se reduce a 0,002 m /s, el error de medición es 2246,222μm (RMS), como se puede ver en los resultados de la comparación. Cuanto más rápida sea la velocidad de carrera, menor será el error de medición. Teniendo en cuenta la conveniencia de la operación de ingeniería, la velocidad de funcionamiento de 2 m/s puede lograr una precisión de medición superior a 10 μm.4 ResumenCon base en el análisis de simulación de la medición de la deformación de la estructura de ingeniería basada en un giroscopio de fibra óptica, se establece el modelo de error del giroscopio de fibra óptica y se obtiene la relación entre el error de medición de la deformación y el rendimiento del giroscopio de fibra óptica utilizando la viga soportada simple. modelo como ejemplo. Los resultados de la simulación muestran que cuanto más rápido funcione el sistema, es decir, cuanto más corto sea el tiempo de muestreo del giroscopio de fibra óptica, mayor será la precisión de la medición de la deformación del sistema cuando el número de muestreo no cambia y se garantiza la precisión de la detección de distancia. Con el índice giroscópico de fibra óptica de precisión media típico y la velocidad de funcionamiento de 2 m/s, se puede lograr una precisión de medición de deformación superior a 10 μm.Micro-Magic Inc GF-50 tiene un diámetro de φ50*36,5 mm y una precisión de 0,1º/h. GF-60 precisión 0.05º/h, pertenece al alto nivel táctico del giroscopio de fibra óptica, nuestra empresa produjo giroscopio con tamaño pequeño, peso ligero, bajo consumo de energía, inicio rápido, operación simple, fácil de usar y otras características, ampliamente utilizado en INS, IMU, sistema de posicionamiento, sistema de búsqueda del norte, estabilidad de plataforma y otros campos. Si está interesado en nuestro giroscopio de fibra óptica, no dude en contactarnos.GF50Giroscopio de fibra óptica estándar militar de precisión media de un solo eje GF60Velocidad Angular Imu del giroscopio de fibra óptica de baja potencia del giroscopio de fibra de un solo eje para navegación 
  • Principio de detección de IMU de tubería y procesamiento de datos
    Principio de detección de IMU de tubería y procesamiento de datos Jan 13, 2025
    Puntos claveProducto: IMU para inspección de tuberíasCaracterísticas clave:Componentes: Equipado con giroscopios y acelerómetros MEMS para medir la velocidad angular y la aceleración.Función: Monitorea las condiciones de la tubería detectando curvas, variaciones de diámetro y limpieza a través de mediciones precisas de movimiento y orientación.Aplicaciones: Se utiliza en la inspección de tuberías, incluida la identificación de deformaciones, la medición del diámetro y los procesos de limpieza.Procesamiento de datos: recopila y procesa datos para una evaluación precisa del estado, la curvatura y la tensión de la tubería.Conclusión: Proporciona información crítica para el mantenimiento de tuberías, mejorando la eficiencia y confiabilidad en las operaciones de inspección y mantenimiento.1.Principio de medición IMUIMU (Unidad de medición inercial) es un dispositivo que puede medir la velocidad angular y la aceleración de un objeto en un espacio tridimensional. Sus componentes principales suelen incluir un giroscopio de tres ejes y un acelerómetro de tres ejes. Los giroscopios se utilizan para medir la velocidad angular de un objeto alrededor de tres ejes ortogonales, mientras que los acelerómetros se utilizan para medir la aceleración de un objeto a lo largo de tres ejes ortogonales. Al integrar estas mediciones, se puede obtener la información de velocidad, desplazamiento y actitud del objeto.2.Identificación de la tensión de flexión de tuberíasEn la inspección de tuberías, la IMU se puede utilizar para identificar la tensión de flexión de la tubería. Cuando se instala una IMU en un cerdo u otro dispositivo móvil y se mueve dentro de una tubería, puede detectar cambios en la aceleración y la velocidad angular causados por la flexión de la tubería. Al analizar estos datos, se puede identificar el grado y la ubicación de las curvas de las tuberías.3.Proceso de medición de diámetro y limpieza de tuberías.El proceso de medición y limpieza del diámetro es una parte importante del mantenimiento de tuberías. En este proceso, se utiliza un cerdo calibrador equipado con una IMU para moverse a lo largo de la tubería, medir el diámetro interior de la tubería y registrar la forma y el tamaño de la tubería. Estos datos se pueden utilizar para evaluar el estado de las tuberías y predecir posibles necesidades de mantenimiento.4.Proceso de limpieza con cepillo de acero.El proceso de limpieza con cepillo de acero se utiliza para eliminar la suciedad y los sedimentos de las paredes internas de las tuberías. En este proceso, un cerdo con un cepillo de acero y una IMU se mueve a lo largo de la tubería, limpiando la pared interior de la tubería mediante cepillado y fregado. La IMU puede registrar la información geométrica y la limpieza de la tubería durante este proceso.5.Proceso de detección de IMUEl proceso de inspección de IMU es un paso clave en el uso de IMU para la recopilación y medición de datos durante el mantenimiento de tuberías. La IMU se instala en un cerdo o equipo similar y se mueve dentro de la tubería mientras registra la aceleración, la velocidad angular y otros parámetros. Estos datos se pueden utilizar para analizar el estado de la tubería, identificar problemas potenciales y proporcionar una base para el mantenimiento y la gestión posteriores.6.Adquisición y posprocesamiento de datosDespués de completar el proceso de detección de IMU, los datos recopilados deben recopilarse y procesarse posteriormente. La adquisición de datos implica transferir datos sin procesar desde el dispositivo IMU a una computadora u otro dispositivo de procesamiento de datos. El posprocesamiento implica limpiar, calibrar, analizar y visualizar los datos. Mediante el posprocesamiento se puede extraer información útil de los datos originales, como la forma, el tamaño, el grado de flexión, etc. de la tubería.7.Medición de velocidad y actitud.IMU puede calcular la velocidad y la actitud de un objeto midiendo la aceleración y la velocidad angular. En la inspección de tuberías, la medición de la velocidad y la actitud es fundamental para evaluar el estado de la tubería e identificar problemas potenciales. Al monitorear los cambios de velocidad y actitud del raspador en la tubería, se puede inferir la forma, el grado de flexión y los posibles obstáculos de la tubería.8. Evaluación de curvatura y deformación de tuberíasUtilizando los datos medidos por la IMU, se puede evaluar la curvatura y la deformación de la tubería. Al analizar los datos de aceleración y velocidad angular, se puede calcular el radio de curvatura y el ángulo de curvatura de la tubería en diferentes ubicaciones. Al mismo tiempo, en combinación con las propiedades del material y las condiciones de carga de la tubería, también se puede evaluar el nivel de deformación y la distribución de tensiones de la tubería en la curva. Esta información es importante para predecir la vida útil de las tuberías, evaluar la seguridad y desarrollar planes de mantenimiento.ResumirEn resumen, IMU desempeña un papel importante en la inspección de tuberías. Al medir parámetros como la aceleración y la velocidad angular, se puede lograr una evaluación integral y el mantenimiento de la salud de la tubería. Con el avance continuo de la tecnología y la expansión de los campos de aplicación, la aplicación de IMU en la inspección de tuberías será cada vez más extensa. El MEMS IMU desarrollado independientemente por Micro-Magic Inc tiene una precisión relativamente alta, como el U5000 y el U7000, que son más precisos y son productos de calidad para navegación. Si desea saber más sobre IMU, comuníquese con nuestros técnicos profesionales lo antes posible.U7000Correa calibrada completa con compensación de temperatura de grado industrial 6Dof con algoritmo de filtro Kalman U5000Giroscopio Imu Rs232/485 para plataforma de estabilización de antena de Radar/infrarrojos 
  • INS versus GPS: ¿Qué sistema es el mejor para usted?
    INS versus GPS: ¿Qué sistema es el mejor para usted? Jan 13, 2025
    Puntos claveProducto: Sistema de Navegación Inercial (INS) y Sistema de Posicionamiento Global (GPS)Características clave:Componentes: INS utiliza acelerómetros y giroscopios; El GPS se basa en señales de satélite.Función: INS proporciona navegación autónoma sin señales externas; El GPS ofrece una geolocalización precisa con cobertura global.Aplicaciones: INS es ideal para aplicaciones submarinas, subterráneas y espaciales; El GPS se utiliza en navegación personal, militar y de seguimiento.Integración: la combinación de INS y GPS mejora la precisión y la confiabilidad en entornos complejos.Conclusión: La elección entre INS y GPS depende de necesidades específicas, y muchas aplicaciones se benefician de su integración para obtener soluciones de navegación óptimas.Para vehículos complejos como aviones, vehículos autónomos, barcos, naves espaciales, submarinos y vehículos aéreos no tripulados, es esencial contar con un sistema preciso para mantener y controlar el movimiento perfecto. Dos de los sistemas de navegación más destacados que se utilizan en la actualidad son el Sistema de Navegación Inercial (INS) y el Sistema de Posicionamiento Global (GPS). Ambos tienen sus ventajas y aplicaciones únicas, pero elegir el mejor sistema para sus necesidades depende de varios factores. Este artículo explorará las diferencias, fortalezas y casos de uso ideales para cada sistema para ayudarlo a tomar una decisión informada.Entendiendo el INS y el GPSSistema de navegación inercial (INS):El buscador de norte MEMS puede proporcionar información de rumbo al cuerpo en movimiento de forma totalmente autónoma, funcionando sin depender de satélites, sin verse afectado por el clima y sin requerir operaciones complejas. No sólo proporciona la interfaz de salida de datos para la computadora, sino que también proporciona una buena interfaz hombre-máquina.El buscador MEMS North se compone principalmente del módulo de medición inercial (IMU) y la parte de línea, y el diagrama de bloques de hardware se muestra en la Figura 1. La unidad de medición inercial (IMU) se compone de un giroscopio y un mecanismo giratorio. La parte del circuito se compone principalmente de cuatro placas de circuito, que incluyen: placa de alimentación, placa de control, placa amplificadora de potencia y placa base. La Tabla 1 muestra los componentes del sistema de búsqueda del norte.Sistema de Posicionamiento Global (GPS):El Sistema de Posicionamiento Global es un sistema de navegación basado en satélites que proporciona geolocalización e información horaria a un receptor GPS en cualquier lugar de la Tierra o cerca de ella donde haya una línea de visión sin obstáculos hacia cuatro o más satélites GPS. El GPS es muy preciso y proporciona información de posicionamiento continua, lo que lo hace ideal para una amplia gama de aplicaciones, desde navegación personal hasta operaciones militares. Sin embargo, las señales de GPS pueden verse obstruidas por edificios, árboles o condiciones atmosféricas, lo que genera posibles imprecisiones.La tecnología GPS se utiliza principalmente para datos de ubicación, mapeo, seguimiento de objetos en movimiento, navegación y estimaciones y mediciones de tiempo. Sin embargo, esta información depende de las conexiones satelitales y, si el dispositivo GPS no puede conectarse a al menos cuatro satélites, los datos proporcionados serán insuficientes para una funcionalidad operativa completa. Fortalezas y debilidadesFortalezas del INS:Independencia: No depende de señales externas, lo que lo hace útil en entornos sin GPS.Respuesta instantánea: proporciona actualizaciones inmediatas sobre la posición y la velocidad.Robustez: Menos susceptible a interferencias o interferencias de señal.Debilidades del INS:Deriva: los errores acumulados pueden generar imprecisiones con el tiempo.Complejidad: Generalmente más complejos y costosos que los sistemas GPS.Fig.2 Pros y contras de Ins y GnssPuntos fuertes del GPS:Precisión: proporciona información de ubicación precisa, a menudo dentro de unos pocos metros.Cobertura: Cobertura global con actualizaciones continuas.Facilidad de uso: Ampliamente disponible y relativamente económico.Puntos fuertes del GPS:Dependencia de la señal: Requiere una línea de visión clara hacia los satélites, que pueden estar obstruidos.Vulnerabilidad: Susceptible a interferencias, suplantaciones y interferencias.Combinando INS y GPSEn muchas aplicaciones, INS y GPS se utilizan juntos para aprovechar sus puntos fuertes complementarios. Al integrar los datos del GPS con el INS, el sistema puede corregir la deriva del INS y proporcionar una navegación más confiable y precisa. Esta combinación es particularmente valiosa en la aviación, donde la navegación continua y precisa es fundamental, y en los vehículos autónomos, donde un posicionamiento robusto y preciso es esencial para una operación segura.Con el rápido desarrollo de los sistemas microelectromecánicos (MEMS), se han desarrollado sistemas de navegación integrados asistidos por GPS más pequeños y portátiles, como los tres modelos de Micro-Magic Inc con diferentes niveles de precisión. Entre ellos, el sistema topográfico y táctico de ultra alta precisión I6600 está equipado con una potente IMU, capaz de generar información de posición, velocidad y actitud de alta precisión.ConclusiónLa elección entre INS y GPS depende de sus necesidades específicas y del entorno en el que operará. Si necesita un sistema que sea independiente de señales externas y que pueda funcionar en entornos difíciles, INS puede ser la mejor opción. Sin embargo, si necesita información de posicionamiento continua y altamente precisa con cobertura global, el GPS probablemente sea la mejor opción. Para muchas aplicaciones, la combinación de ambos sistemas puede proporcionar la solución óptima, asegurando confiabilidad y precisión en la navegación.Al comprender las fortalezas y limitaciones de cada sistema, podrá tomar una decisión informada y seleccionar el sistema de navegación que mejor se adapte a sus necesidades. I6700Sistema de navegación inercial asistido por MEMS GNSS  
  • Método de eliminación de ruido de datos de IMU basado en la descomposición de ondas
    Método de eliminación de ruido de datos de IMU basado en la descomposición de ondas Jan 13, 2025
    Puntos claveProducto: Sistema de navegación inercial (INS) MEMS asistido por GNSSCaracterísticas clave:Componentes: Equipado con giroscopios y acelerómetros MEMS para mediciones inerciales precisas, con soporte GNSS para una navegación mejorada.Función: Combina la precisión INS a corto plazo con la estabilidad GNSS a largo plazo, entregando datos de navegación continuos.Aplicaciones: Adecuado para operaciones tácticas, drones, robótica y automatización industrial.Fusión de datos: combina datos INS con correcciones GNSS para reducir la deriva y mejorar la precisión del posicionamiento.Conclusión: Ofrece alta precisión y confiabilidad, ideal para tareas de navegación en diversas industrias.En el proceso de reducción de ruido de IMU (Unidad de medición inercial), la eliminación de ruido de ondas es un método eficaz. El principio básico de la eliminación de ruido de las wavelets es utilizar las características de localización de frecuencia-tiempo de resolución múltiple de las wavelets para descomponer los componentes de diferentes frecuencias en la señal en diferentes subespacios y luego procesar los coeficientes de las wavelets en estos subespacios para eliminar el ruido.Específicamente, el proceso de eliminación de ruido de wavelets se puede dividir en los siguientes tres pasos:1.Realice una transformación wavelet en la señal IMU ruidosa y descompóngala en diferentes subespacios wavelet.2. Umbral de los coeficientes en estos subespacios de ondículas, es decir, los coeficientes por debajo de un cierto umbral se consideran ruido y se establecen en cero, mientras que los coeficientes por encima del umbral se retienen, y estos coeficientes generalmente contienen información de señal útil.3.Realice una transformación inversa en los coeficientes wavelet procesados para obtener la señal sin ruido.Este método puede eliminar eficazmente el ruido en la señal IMU y mejorar la calidad y precisión de la señal. Al mismo tiempo, debido a que la transformada wavelet tiene buenas características de tiempo-frecuencia, puede retener mejor la información útil en la señal y evitar una pérdida excesiva de información durante el proceso de eliminación de ruido.Tenga en cuenta que los métodos de procesamiento y selección de umbral específicos pueden variar según las características específicas de la señal y las condiciones de ruido y, por lo tanto, deben ajustarse y optimizarse según las circunstancias específicas de las aplicaciones reales.El método de eliminación de ruido de datos IMU basado en la descomposición de ondas es una tecnología de procesamiento de señales eficaz que se utiliza para eliminar el ruido de los datos IMU (Unidad de medición inercial). Los datos de la IMU a menudo contienen ruido de alta frecuencia y deriva de baja frecuencia, lo que puede afectar la precisión y el rendimiento de la IMU. El método de reducción de ruido basado en la descomposición de ondas puede separar y eliminar eficazmente estos ruidos y derivas, mejorando así la precisión y confiabilidad de los datos de IMU.La descomposición de wavelets es una técnica de análisis de múltiples escalas que puede descomponer señales en componentes de wavelets de diferentes frecuencias y escalas. Al descomponer los datos de la IMU mediante wavelets, el ruido de alta frecuencia y la deriva de baja frecuencia se pueden separar y procesar de manera diferente.El método de eliminación de ruido de datos de IMU basado en la descomposición de ondas generalmente incluye los siguientes pasos:1.Realice la descomposición de ondas en los datos de IMU y descompóngalos en componentes de ondas de diferentes frecuencias y escalas.2. De acuerdo con las características de los componentes wavelet, seleccione un umbral apropiado o un método de procesamiento de coeficiente wavelet para suprimir o eliminar el ruido de alta frecuencia.3.Modelar y compensar la deriva de baja frecuencia para reducir su impacto en los datos de IMU.4.Reconstruya los componentes wavelet procesados para obtener datos IMU sin ruido. El método de eliminación de ruido de datos IMU basado en la descomposición de ondas tiene las siguientes ventajas:1.Capaz de separar y eliminar eficazmente el ruido de alta frecuencia y la deriva de baja frecuencia, mejorando la precisión y confiabilidad de los datos de IMU.2. Tener buenas capacidades de análisis de tiempo-frecuencia y poder procesar la información de tiempo y frecuencia de las señales al mismo tiempo.3.Adecuado para diferentes tipos de datos IMU y diferentes escenarios de aplicación, con gran versatilidad y flexibilidad.ResumirEn resumen, el método de eliminación de ruido de datos IMU basado en la descomposición de ondas es una tecnología de procesamiento de señales eficaz que puede mejorar la precisión y confiabilidad de los datos IMU y proporcionar datos más precisos y confiables para navegación inercial, estimación de actitud, seguimiento de movimiento y otros campos. apoyo.La IMU desarrollada independientemente por Micro-Magic Inc utiliza algunos métodos de eliminación de ruido relativamente rigurosos para demostrar mejor a los consumidores las IMU MEMS de mayor precisión y bajo costo, como las U5000 y U3500 como IMU MEMS de la serie de navegación. Los técnicos llevaron a cabo varios experimentos para eliminar el ruido de los datos de la IMU y cumplir mejor con la medición precisa del estado de movimiento de los objetos por parte de los consumidores.Si desea saber más sobre IMU, comuníquese con nuestro personal correspondiente.U3500Sensor IMU MEMS Salida CAN IMU3500 U5000Lo que necesites, CARESTONE está a tu lado. 
  • Identificación de acelerómetro flexible de cuarzo mediante análisis de vibraciones
    Identificación de acelerómetro flexible de cuarzo mediante análisis de vibraciones Jan 13, 2025
    Puntos claveProducto: Acelerómetro flexible de cuarzoCaracterísticas clave:Componentes: Utiliza acelerómetros flexibles de cuarzo de alta precisión para mediciones precisas de aceleración e inclinación.Función: El análisis de vibraciones ayuda a identificar los coeficientes de error del sensor, mejorando la precisión y el rendimiento de la medición.Aplicaciones: Ampliamente utilizado en monitoreo de salud estructural, navegación aeroespacial, pruebas automotrices y diagnóstico de maquinaria industrial.Análisis de datos: combina datos de vibración con algoritmos de procesamiento de señales para optimizar los modelos de sensores y mejorar el rendimiento.Conclusión: Ofrece mediciones de aceleración precisas y confiables, con un gran potencial en diversas industrias de alta precisión.1.Introducción:En el ámbito de la tecnología de sensores, los acelerómetros desempeñan un papel fundamental en diversas industrias, desde la automoción hasta la aeroespacial, desde la atención sanitaria hasta la electrónica de consumo. Su capacidad para medir la aceleración y la inclinación en múltiples ejes los hace indispensables para aplicaciones que van desde el monitoreo de vibraciones hasta la navegación inercial. Entre los diversos tipos de acelerómetros, los acelerómetros flexibles de cuarzo destacan por su precisión y versatilidad. En este artículo, profundizamos en las complejidades de identificar acelerómetros flexibles de cuarzo mediante análisis de vibraciones, explorando su diseño, principios de funcionamiento y la importancia del análisis de vibraciones para optimizar su rendimiento.2.Importancia del análisis de vibraciones:Para identificar el acelerómetro, primero, realice pruebas en una mesa de vibración multidireccional. Obtenga datos sin procesar enriquecidos a través del software de adquisición de datos. Luego, con base en los datos de la prueba, por un lado, combine el algoritmo general de mínimos cuadrados para identificar sus coeficientes de error de alto orden, mejorar su ecuación del modelo de señal, mejorar la precisión de la medición del sensor y explorar la relación entre los altos- Coeficientes de error de orden del acelerómetro y su estado de funcionamiento.Buscar métodos para identificar su estado operativo a través de los coeficientes de error de alto orden del acelerómetro. Por otro lado, extraiga su conjunto de características efectivas, entrene redes neuronales y finalmente modularice el algoritmo de análisis de datos efectivo a través de tecnología de instrumentos virtuales. Desarrollar software de aplicación para identificar el estado operativo de acelerómetros flexibles de cuarzo para lograr una identificación rápida y precisa del estado operativo del sensor. Esto ayudará al personal a mejorar rápidamente las estructuras de los circuitos internos, mejorar la precisión de las mediciones de los acelerómetros y mejorar el rendimiento de los productos fabricados durante el proceso de procesamiento y fabricación.El análisis de vibraciones sirve como piedra angular en la caracterización y optimización de acelerómetros flexibles de cuarzo. Al someter estos sensores a vibraciones controladas en diferentes frecuencias y amplitudes, los ingenieros pueden evaluar sus características de respuesta dinámica, incluida la sensibilidad, la linealidad y el rango de frecuencia. El análisis de vibraciones ayuda a identificar posibles fuentes de error o no linealidad en la salida del acelerómetro, lo que permite a los fabricantes ajustar los parámetros del sensor para mejorar el rendimiento y la precisión.3.Proceso de Identificación:La identificación de acelerómetros flexibles de cuarzo mediante análisis de vibraciones implica un enfoque sistemático que abarca pruebas experimentales, análisis de datos y validación. Los ingenieros suelen realizar pruebas de vibración utilizando agitadores calibrados o sistemas de excitación de vibración, exponiendo los acelerómetros a vibraciones sinusoidales o aleatorias mientras registran sus señales de salida. Se emplean técnicas avanzadas de procesamiento de señales, como el análisis de Fourier y la estimación de la densidad espectral, para analizar la respuesta de frecuencia de los acelerómetros e identificar frecuencias de resonancia, relaciones de amortiguación y otros parámetros críticos. Mediante pruebas y análisis iterativos, los ingenieros perfeccionan el modelo del acelerómetro y validan su rendimiento según criterios específicos.4.Aplicaciones y perspectivas de futuro:Los acelerómetros flexibles de cuarzo encuentran aplicaciones en una amplia gama de industrias, incluida la monitorización del estado estructural, la navegación aeroespacial, las pruebas automotrices y el diagnóstico de maquinaria industrial. Su alta precisión, robustez y versatilidad los convierten en herramientas indispensables para ingenieros e investigadores que se esfuerzan por comprender y mitigar los efectos de las fuerzas dinámicas y las vibraciones. De cara al futuro, los avances continuos en la tecnología de sensores y los algoritmos de procesamiento de señales están preparados para mejorar aún más el rendimiento y las capacidades de los acelerómetros flexibles de cuarzo, desbloqueando nuevas fronteras en el análisis de vibraciones y la detección dinámica de movimiento.En conclusión, la identificación de acelerómetros flexibles de cuarzo mediante análisis de vibraciones representa un esfuerzo crítico en la tecnología de sensores, que permite a los ingenieros desbloquear todo el potencial de estos instrumentos de precisión. Al comprender los principios de funcionamiento, realizar análisis exhaustivos de vibraciones y perfeccionar el rendimiento de los sensores, los fabricantes e investigadores pueden aprovechar las capacidades de los acelerómetros de cuarzo para una gran variedad de aplicaciones, que van desde el monitoreo estructural hasta los sistemas de navegación avanzados. A medida que la innovación tecnológica continúa acelerándose, el papel del análisis de vibraciones en la optimización del rendimiento del sensor seguirá siendo primordial, impulsando avances en la medición de precisión y la detección dinámica de movimiento.5.ConclusiónMicro-Magic Inc proporciona acelerómetros flexibles de cuarzo de alta precisión, como AC1, con pequeño error y alta precisión, que tienen una estabilidad de polarización de 5 μg, una repetibilidad del factor de escala de 15 ~ 50 ppm y un peso de 80 gy pueden ser ampliamente utilizado en los campos de la perforación petrolera, el sistema de medición de microgravedad del portador y la navegación inercial. AC1Acelerómetro flexible de cuarzo de nivel de clase de navegación con rango de medición 50G Excelente estabilidad y repetibilidad a largo plazo  
  • ¿Cómo mejorar el rendimiento de los sistemas de navegación inercial MEMS?
    ¿Cómo mejorar el rendimiento de los sistemas de navegación inercial MEMS? Jan 13, 2025
    Puntos claveProducto: Sistema de navegación integrado GNSS/MEMS INSCaracterísticas clave:Componentes: Combina sensores inerciales MEMS con receptores GNSS para mejorar las capacidades de navegación.Función: Proporciona actualizaciones de alta frecuencia e información precisa sobre posición, velocidad y actitud integrando datos inerciales con correcciones GNSS.Aplicaciones: Ideal para drones, registradores de vuelo, vehículos inteligentes no tripulados y vehículos submarinos.Fusión de datos: utiliza el filtrado de Kalman para fusionar datos GNSS con datos MEMS INS, corrigiendo errores acumulados y mejorando la precisión general.Conclusión: Este sistema integrado aprovecha las fortalezas de ambas tecnologías para mejorar el rendimiento y la confiabilidad de la navegación, con una amplia gama de aplicaciones en diversas industrias.Con el desarrollo de dispositivos inerciales MEMS, la precisión de los giroscopios y acelerómetros MEMS ha mejorado gradualmente, lo que ha dado lugar a rápidos avances en la aplicación de INS MEMS. Sin embargo, la mejora en la precisión de los dispositivos inerciales MEMS no ha sido suficiente para satisfacer las demandas de precisión cada vez más altas de MEMS INS. Por lo tanto, mejorar la precisión de MEMS INS mediante algoritmos de compensación de errores y otros métodos se ha convertido en un foco de investigación de MEMS INS.Para mejorar el rendimiento de MEMS INS, los investigadores han explorado varios métodos para reducir los errores en estos sistemas. Hay cuatro enfoques principales para reducir los errores de MEMS INS:Calibración y compensación de parámetros de error del sensor: esto implica el uso de modelos matemáticos y herramientas experimentales para estimular los errores del sensor, calibrar sistemáticamente errores deterministas a nivel del sistema y luego compensar estos errores mediante algoritmos de navegación inercial para mejorar el rendimiento general.Tecnología de modulación de rotación: al aplicar esquemas de modulación de rotación adecuados, se pueden hacer que los errores del sensor varíen periódicamente sin depender de fuentes de información externas. Esta compensación automática de errores en el algoritmo de navegación suprime la influencia de los errores del sensor en MEMS INS.Tecnología de redundancia de dispositivos inerciales: debido al bajo costo de los sensores inerciales MEMS, se pueden implementar diseños de redundancia. La redundancia en los sensores puede reducir efectivamente el impacto de los errores aleatorios en MEMS INS, mejorando así el rendimiento.Incorporación de fuentes de información externas: uso del filtrado de Kalman para la navegación integrada para suprimir la acumulación de errores MEMS INS.Este artículo presentará con más detalle el cuarto método, que es la forma de navegación integrada más práctica y ampliamente investigada: el sistema de navegación integrada GNSS/MEMS INS.Razones para utilizar GNSS para ayudar a MEMS INSMEMS INS es un tipo de sistema de navegación a estima que mide el estado relativo desde el momento de muestreo anterior al actual. No depende de señales acústicas, ópticas o eléctricas para realizar mediciones, lo que lo hace altamente resistente a interferencias y engaños externos. Su autonomía y confiabilidad lo convierten en un sistema de navegación central para diversos transportistas, como aviones, barcos y vehículos. La figura 1 enumera el rendimiento del INS de diferentes grados.Fig.1 El rendimiento del INS de diferentes grados.MEMS INS ofrece una alta tasa de actualización y puede generar información de estado completa, incluida la posición, la velocidad, la actitud, la velocidad angular y la aceleración, con una alta precisión de navegación a corto plazo. Sin embargo, MEMS INS requiere fuentes de información adicionales para inicializar la posición, velocidad y actitud, y su error de navegación inercial puro se acumula con el tiempo, particularmente en INS de grado táctico y comercial.La combinación GNSS/MEMS INS puede aprovechar las ventajas complementarias de ambos sistemas: GNSS proporciona una precisión estable a largo plazo y puede ofrecer valores iniciales de posición y velocidad, corrigiendo los errores acumulados en MEMS INS mediante filtrado. Mientras tanto, MEMS INS puede mejorar la tasa de actualización de la salida de navegación GNSS, enriquecer los tipos de salida de información de estado y ayudar a detectar y eliminar fallas de observación GNSS.Modelo Básico de Navegación Integrada GNSS/MEMS INSEl modelo básico de integración GNSS/MEMS INS refleja la relación funcional entre la información observada de los sensores (IMU y receptores) y los parámetros de navegación del operador (posición, velocidad y actitud), así como los tipos y modelos aleatorios de errores de medición de los sensores. . Los parámetros de navegación del transportista deben describirse en un sistema de coordenadas de referencia específico.Fig.2 Modelo básico de navegación integrada Gnssmems InsLos problemas de navegación generalmente involucran dos o más sistemas de coordenadas: los sensores inerciales miden el movimiento del portaaviones en relación con el espacio inercial, mientras que los parámetros de navegación del portaaviones (posición y velocidad) generalmente se describen en un sistema de coordenadas fijo en la Tierra para una comprensión intuitiva. Los sistemas de coordenadas comúnmente utilizados en la navegación integrada GNSS/INS incluyen el sistema de coordenadas inerciales centrado en la Tierra, el sistema de coordenadas fijas de la Tierra centrado en la Tierra, el sistema de coordenadas geográficas locales y el sistema de coordenadas corporales.Actualmente, los algoritmos para la integración GNSS/MEMS INS en navegación absoluta han madurado y han surgido en el mercado muchos productos de alto rendimiento. Por ejemplo, los tres modelos MEMS INS recientemente lanzados por Micro-Magic Inc, que se muestran en la imagen a continuación, son adecuados para aplicaciones en drones, registradores de vuelo, vehículos inteligentes no tripulados, posicionamiento y orientación de carreteras, detección de canales, vehículos de superficie no tripulados y submarinos. vehículos.Fig.3 Los tres INS GNSS/MEMS recientemente lanzados por Micro-Magic IncI3500Sistema de navegación inercial Mems Gyro I3500 de 3 ejes de alta precisión I3700Módulo rastreador Gps agrícola de alta precisión, sistema de navegación inercial de consumo, algoritmo Rtk de antena Mtk Rtk Gnss Rtk 
  • ¿Cómo funciona el giroscopio táctico de fibra óptica?
    ¿Cómo funciona el giroscopio táctico de fibra óptica? Jan 13, 2025
    Puntos claveProducto: Giroscopio de fibra óptica (FOG)Características clave:Componentes: Basado en bobinas de fibra óptica, que utiliza el efecto Sagnac para mediciones precisas de desplazamiento angular.Función: Ofrece alta sensibilidad y precisión, ideal para determinar la orientación de objetos en movimiento.Aplicaciones: Ampliamente utilizado en el ámbito militar (p. ej., guía de misiles, navegación de tanques) y en expansión a sectores civiles (p. ej., navegación automotriz, topografía).Fusión de datos: combina mediciones inerciales con microelectrónica avanzada para mejorar la precisión y la estabilidad.Conclusión: El giroscopio de fibra óptica es fundamental para la navegación de alta precisión, con un potencial de crecimiento prometedor en diversas aplicaciones.Mercado de la industria del giroscopio de fibra ópticaCon sus ventajas únicas, el giroscopio de fibra óptica tiene una amplia perspectiva de desarrollo en el campo de la medición precisa de cantidades físicas. Por lo tanto, explorar la influencia de los dispositivos ópticos y el entorno físico en el rendimiento de los giroscopios de fibra óptica y suprimir el ruido de intensidad relativa se han convertido en tecnologías clave para realizar el giroscopio de fibra óptica de alta precisión. Con la profundización de la investigación, se desarrollará y aplicará en gran medida el giroscopio de fibra integrado con alta precisión y miniaturización.El giroscopio de fibra óptica es uno de los dispositivos principales en el campo de la tecnología de inercia en la actualidad. Con la mejora del nivel técnico, la escala de aplicación del giroscopio de fibra óptica seguirá expandiéndose. Como componente central de los giroscopios de fibra óptica, la demanda del mercado también crecerá. En la actualidad, todavía es necesario importar el anillo de fibra óptica de alta gama de China y, bajo la tendencia general de sustitución interna, aún es necesario mejorar aún más la competitividad central de las empresas de anillos de fibra óptica de China y las capacidades independientes de investigación y desarrollo.En la actualidad, el anillo de fibra óptica se utiliza principalmente en el campo militar, pero con la expansión de la aplicación del giroscopio de fibra óptica al campo civil, la proporción de aplicación del anillo de fibra óptica en el campo civil mejorará aún más.Según el "Informe de análisis de asesoramiento de inversión y estudio de mercado de la industria del giroscopio de fibra óptica de China 2022-2027":El giroscopio de fibra óptica es un elemento sensible basado en la bobina de fibra óptica y la luz emitida por el diodo láser se propaga a lo largo de la fibra óptica en dos direcciones. La diferencia en la trayectoria de propagación de la luz determina el desplazamiento angular del elemento sensible. El giroscopio de fibra óptica moderno es un instrumento que puede determinar con precisión la orientación de objetos en movimiento. Es un instrumento de navegación inercial ampliamente utilizado en las industrias modernas de aviación, navegación, aeroespacial y de defensa nacional. Su desarrollo es de gran importancia estratégica para la industria, la defensa nacional y otros desarrollos de alta tecnología de un país.El giroscopio de fibra óptica es un nuevo sensor de fibra óptica de estado sólido basado en el efecto Sagnac. El giroscopio de fibra óptica se puede dividir en giroscopios de fibra óptica interferométricos (I-FOG), giroscopio de fibra óptica resonante (R-FOG) y giroscopio de fibra óptica de dispersión Brillouin estimulado (B-FOG) según su modo de funcionamiento. Según su precisión, el giroscopio de fibra óptica se puede dividir en: nivel táctico de gama baja, nivel táctico de gama alta, nivel de navegación y nivel de precisión. Los giroscopios de fibra óptica se pueden dividir en militares y civiles según su apertura. En la actualidad, la mayoría de los giroscopios de fibra óptica se utilizan en aspectos militares: actitud de cazas y misiles, navegación de tanques, medición de rumbo de submarinos, vehículos de combate de infantería y otros campos. El uso civil es principalmente la navegación de automóviles y aviones, la inspección de puentes, la extracción de petróleo y otros campos.Dependiendo de la precisión del giroscopio de fibra óptica, sus aplicaciones van desde armas y equipos estratégicos hasta campos civiles de grado comercial. Los giroscopios de fibra óptica de precisión media y alta se utilizan principalmente en campos de armas y equipos de alta gama, como el aeroespacial, mientras que los giroscopios de fibra óptica de bajo costo y baja precisión se utilizan principalmente en exploración petrolera, control de actitud de aviones agrícolas, robots y muchos otros. Campos civiles con requisitos de baja precisión. Con el desarrollo de tecnologías microelectrónicas y optoelectrónicas avanzadas, como la integración fotoeléctrica y el desarrollo de fibras ópticas especiales para giroscopios de fibra óptica, se ha acelerado la miniaturización y el bajo costo de los giroscopios de fibra óptica.ResumenEl giroscopio de fibra óptica de Micro-Magic Inc es principalmente un giroscopio de fibra óptica táctico de precisión media, en comparación con otros fabricantes, de bajo costo, larga vida útil, el precio es muy dominante y el campo de aplicación también es muy amplio, incluidos dos GF50 muy vendidos. , GF-60, puede hacer clic en la página de detalles para obtener más datos técnicos.GF50Giroscopio de fibra óptica estándar militar de precisión media de un solo eje GF60Velocidad Angular Imu del giroscopio de fibra óptica de baja potencia del giroscopio de fibra de un solo eje para navegación 
  • ¿Cómo funcionan los acelerómetros de alta temperatura?
    ¿Cómo funcionan los acelerómetros de alta temperatura? Jan 13, 2025
    Puntos claveProducto: Acelerómetros de alta temperaturaCaracterísticas clave:Componentes: Diseñado con materiales y tecnologías avanzadas, como estructuras de cuarzo amorfo para una mayor estabilidad.Función: Proporcionar datos fiables y precisos en entornos extremos, cruciales para la seguridad y el rendimiento.Aplicaciones: Esencial en petróleo y gas (sistemas MWD), aeroespacial (monitoreo estructural), pruebas automotrices (evaluaciones de accidentes y rendimiento) y diversos sectores industriales.Integridad de datos: Capaz de operar bajo altas temperaturas y vibraciones, lo que garantiza un rendimiento continuo y un tiempo de inactividad mínimo.Conclusión: Los acelerómetros de alta temperatura son vitales para las industrias que operan en condiciones difíciles, ya que mejoran la eficiencia y la seguridad con mediciones precisas.La confiabilidad es crucial para el éxito en la desafiante industria del petróleo y el gas, donde los riesgos son frecuentes y pueden afectar significativamente las oportunidades. Los datos confiables y precisos pueden determinar si una empresa tiene éxito o fracasa.Ericco ha estado suministrando productos de detección robustos al sector mundial del petróleo y el gas, demostrando su confiabilidad y precisión excepcionales en algunos de los entornos más exigentes del mundo.1.¿Qué son los acelerómetros de alta temperatura?Los acelerómetros de alta temperatura están diseñados para soportar condiciones adversas y proporcionar datos precisos en industrias exigentes como la aeroespacial y la de petróleo y gas. Básicamente, su propósito es funcionar eficazmente en entornos desafiantes, incluidos entornos subterráneos y temperaturas extremas.Los fabricantes de acelerómetros de alta temperatura emplean tecnologías específicas para garantizar la confiabilidad de los sensores en condiciones extremas. Por ejemplo, se ha demostrado que el acelerómetro de cuarzo para petróleo y gas de Micro-Magic Incs posee un alto rendimiento. Este modelo utiliza una estructura de masa de prueba de cuarzo amorfo que reacciona a la aceleración a través del movimiento de flexión, lo que garantiza una excelente estabilidad en el sesgo, el factor de escala y la alineación del eje.2. ¿Cómo se utilizan los acelerómetros de alta temperatura?Los acelerómetros de alta temperatura son vitales en industrias donde los equipos deben soportar condiciones extremas. Su diseño robusto y tecnología avanzada les permiten operar de manera confiable en entornos hostiles, proporcionando datos cruciales que mejoran la seguridad, la eficiencia y el rendimiento. He aquí un vistazo más de cerca a sus aplicaciones y significado:2.1 Industria del petróleo y el gasEn la industria del petróleo y el gas, los acelerómetros de alta temperatura son componentes esenciales de los sistemas de medición durante la perforación (MWD). MWD es una técnica de registro de pozos que utiliza sensores dentro de la columna de perforación para proporcionar datos en tiempo real, guiando la perforación y optimizando las operaciones de perforación. Estos acelerómetros pueden soportar el intenso calor, los golpes y las vibraciones que se encuentran en las profundidades del subsuelo. Al ofrecer mediciones precisas, ayudan.Optimice las operaciones de perforación: proporcione datos precisos sobre la orientación y posición de la broca, lo que ayuda a una perforación eficiente y precisa.Mejore la seguridad: detecte vibraciones y golpes que podrían indicar problemas potenciales, lo que permitirá una intervención oportuna y la prevención de accidentes.Mejore la eficiencia: reduzca el tiempo de inactividad proporcionando datos continuos y confiables que ayuden a prevenir fallas operativas e interrupciones costosas.Fig.1 Acelerómetros de alta temperatura2.2 AeroespacialEn la industria aeroespacial, los acelerómetros de alta temperatura se utilizan para controlar el rendimiento y la integridad estructural de las aeronaves. Pueden soportar las condiciones extremas del vuelo, incluidas altas temperaturas y vibraciones intensas, y son cruciales paraMonitoreo de la salud estructural: mida las vibraciones y tensiones en los componentes de la aeronave, asegurándose de que permanezcan dentro de límites seguros.Rendimiento del motor: monitorear las vibraciones en los motores de las aeronaves para detectar anomalías y prevenir fallas en los motores.Pruebas de vuelo: proporcione datos precisos sobre la dinámica de las aeronaves durante los vuelos de prueba, ayudando en el desarrollo y perfeccionamiento de los diseños de las aeronaves.2.3 Pruebas automotricesEn las pruebas automotrices, se emplean acelerómetros de alta temperatura para medir la dinámica del vehículo y la integridad estructural en condiciones extremas. Son particularmente útiles para:Pruebas de choque: monitoree las fuerzas de aceleración y desaceleración durante las pruebas de choque para evaluar la seguridad y la resistencia al choque del vehículo.Pruebas de alto rendimiento: Mida vibraciones y tensiones en vehículos de alto rendimiento para garantizar que los componentes puedan soportar condiciones de conducción extremas.Pruebas de durabilidad: evalúe la durabilidad a largo plazo de los componentes automotrices sometiéndolos a altas temperaturas y vibraciones prolongadas.2.4 Aplicaciones industrialesMás allá de las industrias de petróleo y gas, aeroespacial y automotriz, los acelerómetros de alta temperatura también se utilizan en otras aplicaciones industriales donde los equipos operan en condiciones extremas. Estos incluyen:Generación de energía: Monitoree las vibraciones en turbinas y otros equipos para garantizar un rendimiento óptimo y prevenir fallas.Fabricación: Mida vibraciones y tensiones en maquinaria pesada para mantener la eficiencia operativa y la seguridad.Robótica: Proporciona datos precisos sobre los movimientos y tensiones que experimentan los robots que operan en entornos de alta temperatura, como los utilizados en soldadura o fundiciones.3. Acelerómetros de alta temperatura de Micro-Magic IncMicro-Magic Inc se ha destacado en el diseño y fabricación de acelerómetros de alta temperatura que cumplen con los exigentes requisitos de estas industrias. Ofrecemos soluciones adaptadas para la exploración de energía y otras aplicaciones de alta temperatura. Estos acelerómetros cuentan con:Salida analógica: Para una fácil integración con sistemas existentes.Opciones de montaje: Bridas cuadradas o redondas para adaptarse a diferentes necesidades de instalación.Rango ajustable en campo: permite la personalización según los requisitos de aplicaciones específicas.Sensores de temperatura internos: Para compensación térmica, asegurando mediciones precisas a pesar de las variaciones de temperatura.Es más, se ha demostrado que el acelerómetro de cuarzo para petróleo y gas de Micro-Magic Inc posee un alto rendimiento. Este modelo utiliza una estructura de masa de prueba de cuarzo amorfo que reacciona a la aceleración a través del movimiento de flexión, lo que garantiza una excelente estabilidad en el sesgo, el factor de escala y la alineación del eje.Algunos acelerómetros de alta temperatura también incorporan amplificadores externos para proteger el sensor contra daños por calor.Y recomendamos el AC1 para petróleo y gas, cuya temperatura de funcionamiento es de -55 ~ +85 ℃, con un rango de entrada de ±50 g y repetibilidad de polarización.
1 2 3 4 5 6
Un total de 6paginas
Subscibe To Newsletter
Continúe leyendo, manténgase informado, suscríbase y le invitamos a que nos cuente lo que piensa.
f y

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

Contáctenos