Hogar

Acelerómetro MEMS

  • Analysis of Mid-Low Precision FOG IMU Inertial Measurement System | Guide to Fiber Optic Gyro Navigation Scheme
    Analysis of Mid-Low Precision FOG IMU Inertial Measurement System | Guide to Fiber Optic Gyro Navigation Scheme Apr 01, 2025
    Discover the mid-low precision FOG IMU system: a cost-effective, shock-resistant inertial navigation solution for UAVs, robotics, and marine applications. Learn about its modular design, quick startup, and high stability. In the fields of unmanned systems, intelligent manufacturing, and precise control, the inertial measurement unit (IMU) is becoming a crucial "invisible technology". Today, we will take you to deeply understand a solution that performs well in actual projects - a mid-low precision FOG IMU system designed based on open-loop fiber optic gyroscope (FOG) and MEMS accelerometer.This is not only an inertial sensing device, but also a perfect balance between miniaturization, high cost-effectiveness, and precise navigation. 1. Why Choose FOG IMU? As the traditional platform-based inertial navigation systems are gradually fading from the historical stage, strapdown inertial navigation systems (SINS) have become mainstream relying on mathematical modeling and digital computing.So, what are the core advantages of FOG IMU?(1) Resistance to shock and interference: Fiber optic gyros are naturally shock-resistant and can withstand high G forces, making them particularly suitable for harsh environments.(2) Quick startup: No need for complex initialization; plug and play once powered on.(3) Precise and cost-effective: While meeting navigation requirements, it also controls costs.(4) Easy integration: Small size, low power consumption, and easy embedding.Therefore, it is widely applied in fields such as unmanned aerial vehicles, robots, vehicle-mounted systems, and maritime navigation. 2. Highlights of System Architecture This FOG IMU adopts a modular design, consisting of a three-axis fiber optic gyroscope, a three-axis MEMS accelerometer, a data acquisition module, and a high-speed DSP, supplemented by temperature compensation and error modeling algorithms, to achieve stable output.The six sensitive axes are arranged in three-dimensional orthogonal manner, combined with a software compensation mechanism, to eliminate the influence of structural errors on navigation accuracy.Moreover, this system has also been verified through simulation, ensuring that it still meets the required accuracy for navigation calculations even when using low-precision sensors. 3. Data Acquisition Module: The "Neural Center" of IMU We have specially optimized the data acquisition link:(1) Analog signal conditioning: Two-stage amplification + analog filter, enhancing signal clarity.(2) High-precision ADC sampling: 10ms update cycle, ensuring rapid system response.(3) Temperature compensation channel: Integrated chip and environmental temperature monitoring, achieving full environmental adaptability.This module plays a crucial role in enhancing the overall accuracy of the system. 4. Performance and Real-World Feedback After the prototype deployment and system testing, the performance of this FOG IMU system is as follows:(1) Excellent stability of attitude angles(2) Static errors within the controllable range(3) Strong anti-interference performance, capable of adapting to rapid dynamic changesCurrently, this system has been put into use in a certain type of robot navigation platform, and the feedback is consistent and good. 5. Application Domain Outlook The FOG IMU system is ready to be applied in the following scenarios:(1) Navigation for unmanned aircraft and unmanned vehicles(2) Marine measurement systems(3) Industrial automation equipment(4) Attitude control for low-orbit satellites(5) Intelligent robots and precise positioningIn the future, we will also launch an upgraded version of the FOG IMU tailored for high-precision requirements such as UF-100A. Stay tuned for more updates!   UF100A Middle Precision Fiber Optic Gyroscope Based IMU    
  • Soluciones para una detección eficaz de la inclinación mediante acelerómetros MEMS
    Soluciones para una detección eficaz de la inclinación mediante acelerómetros MEMS Dec 23, 2024
    Puntos claveProducto: Acelerómetro MEMS de alta precisión ACM 1200Características:Estabilidad de sesgo: 100 mg para una compensación confiable de gravedad ceroResolución: 0,3 mg para mediciones precisasRango de temperatura: Calibrado de fábrica de -40°C a +80°CAplicaciones: Diseñado para el monitoreo de inclinación en estructuras hidráulicas, ingeniería civil e infraestructura.Ventajas: Alta precisión (precisión de inclinación de 0,1°), eficaz en entornos dinámicos, aborda criterios clave como bajo ruido, repetibilidad y sensibilidad entre ejes, mejorando la confiabilidad y el rendimiento a largo plazo en los sistemas de detección de inclinación.En el campo de los sistemas MEMS, los acelerómetros capacitivos se han convertido en una tecnología fundamental para la detección de inclinación o inclinación. Estos dispositivos, esenciales para diversas aplicaciones industriales y de consumo, enfrentan desafíos importantes, especialmente en entornos dinámicos donde prevalecen las vibraciones y los golpes. Lograr una alta precisión, como una precisión de inclinación de 0,1°, requiere abordar una variedad de especificaciones técnicas y factores de error. Este artículo profundiza en los criterios y soluciones clave para una detección de inclinación efectiva utilizando acelerómetros MEMS.1.Criterios clave para una detección precisa de la inclinaciónEstabilidad de polarización: La estabilidad de polarización se refiere a la capacidad del acelerómetro para mantener una compensación de gravedad cero constante a lo largo del tiempo. La alta estabilidad de polarización garantiza que las lecturas del sensor sigan siendo confiables y no se desvíen, lo cual es crucial para mantener la precisión en las mediciones de inclinación. Compensación de sobretemperatura: Las variaciones de temperatura pueden provocar cambios en la compensación de gravedad cero del acelerómetro. Minimizar estos cambios, conocidos como compensación tempco, es esencial para mantener la precisión en diferentes condiciones operativas.Bajo nivel de ruido: el ruido en las lecturas del sensor puede afectar significativamente la precisión de las mediciones de inclinación. Los acelerómetros de bajo ruido son vitales para lograr lecturas de inclinación precisas y estables, particularmente en entornos estáticos.Repetibilidad: La repetibilidad se refiere a la capacidad del sensor para producir la misma salida en condiciones idénticas durante múltiples pruebas. La alta repetibilidad garantiza un rendimiento constante, lo cual es fundamental para una detección de inclinación confiable.Rectificación de vibraciones: en entornos dinámicos, la vibración puede distorsionar los datos de inclinación. La rectificación eficaz de las vibraciones minimiza el impacto de estas perturbaciones, lo que permite mediciones precisas de la inclinación incluso cuando el sensor está sujeto a vibraciones externas.Sensibilidad del eje transversal: este parámetro mide cuánto se ve afectada la salida del sensor por las aceleraciones perpendiculares al eje de medición. La baja sensibilidad del eje transversal es esencial para garantizar que el acelerómetro responda con precisión a la inclinación únicamente a lo largo del eje previsto.2.Desafíos en entornos dinámicosLos entornos dinámicos plantean desafíos importantes para los acelerómetros MEMS en aplicaciones de detección de inclinación. La vibración y los golpes pueden introducir errores que corrompen los datos de inclinación, lo que genera importantes imprecisiones en las mediciones. Por ejemplo, lograr 1° es más factible. Comprender el rendimiento del sensor y las condiciones ambientales de la aplicación es fundamental para optimizar la precisión de la medición de la inclinación.3.Fuentes de error y estrategias de mitigaciónVarias fuentes de error pueden afectar la precisión de los acelerómetros MEMS en la detección de inclinación: Precisión y cambio de polarización de gravedad cero: Los errores de polarización de gravedad cero pueden surgir debido a la soldadura, la alineación de la carcasa de PCB y los cambios de temperatura. La calibración posterior al ensamblaje puede reducir estos errores.Precisión de sensibilidad y Tempco: Se deben minimizar las variaciones en la sensibilidad debido a los cambios de temperatura para garantizar lecturas precisas.No linealidad: las respuestas no lineales pueden distorsionar las mediciones y deben corregirse mediante calibración.Histéresis y estabilidad a largo plazo: la histéresis y la estabilidad durante la vida útil del sensor pueden afectar la precisión. Estos problemas a menudo se abordan mediante prácticas de diseño y fabricación de alta calidad.Humedad y curvatura de PCB: Los factores ambientales como la humedad y las tensiones mecánicas derivadas de la curvatura de PCB pueden introducir errores adicionales. El servicio in situ y los controles ambientales son necesarios para mitigar estos efectos.Por ejemplo, el acelerómetro MEMS de alta precisión ACM 1200 está diseñado específicamente para aplicaciones de inclinación. Cuenta con una estabilidad de polarización de 100 mg y una resolución de 0,3 mg. La calibración de fábrica caracteriza toda la cadena de señal del sensor en cuanto a sensibilidad y polarización en un rango de temperatura específico (normalmente de −40 °C a +80 °C), lo que garantiza una alta precisión y confiabilidad en instalación. Es adecuado para instalaciones a largo plazo en estructuras hidráulicas como presas de hormigón, presas de paneles y presas de tierra y roca, así como en edificios civiles e industriales, carreteras, puentes, túneles, firmes de carreteras y cimientos de ingeniería civil. Facilita la medición de cambios de inclinación y permite la recopilación automatizada de datos de medición.4. ConclusiónLos acelerómetros capacitivos MEMS son fundamentales para lograr una detección precisa de la inclinación, pero deben superar varios desafíos, especialmente en entornos dinámicos. Criterios clave como la estabilidad de polarización, la compensación de sobretemperatura, el bajo ruido, la repetibilidad, la rectificación de vibraciones y la sensibilidad entre ejes desempeñan un papel fundamental para garantizar mediciones precisas. Abordar las fuentes de error mediante la calibración y el empleo de soluciones integradas como iSensors puede mejorar significativamente el rendimiento y la confiabilidad de los sistemas de detección de inclinación. A medida que avance la tecnología, estos sensores seguirán evolucionando y ofrecerán una precisión y robustez aún mayores para una amplia gama de aplicaciones. ACM1200Fábrica de sensores de acelerómetro Mems de tipo actual de la industria de alto rendimiento  
Subscibe To Newsletter
Continúe leyendo, manténgase informado, suscríbase y le invitamos a que nos cuente lo que piensa.
f y

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

Contáctenos