Hogar

Taller de giroscopio MEMS

  • Análisis del bucle de control del modo de accionamiento del giroscopio MEMS
    Análisis del bucle de control del modo de accionamiento del giroscopio MEMS Jan 10, 2025
    Puntos claveProducto: Sistema de navegación inercial puro (INS) basado en IMUCaracterísticas clave:Componentes: Utiliza acelerómetros y giroscopios MEMS para medir en tiempo real la aceleración y la velocidad angular.Función: Integra datos de posición y actitud iniciales con mediciones de IMU para calcular la posición y actitud en tiempo real.Aplicaciones: Ideal para navegación en interiores, aeroespacial, sistemas autónomos y robótica.Desafíos: aborda errores de sensores, deriva acumulativa e impactos ambientales dinámicos con métodos de calibración y filtrado.Conclusión: Proporciona un posicionamiento preciso en entornos desafiantes, con un rendimiento sólido cuando se combina con sistemas de posicionamiento auxiliares como el GPS. El giroscopio MEMS depende de la velocidad angular sensible a la fuerza de Coriolis y su sistema de control se divide en un bucle de control del modo de conducción y un bucle de control del modo de detección. Sólo garantizando el seguimiento en tiempo real de la amplitud de vibración del modo de accionamiento y la frecuencia de resonancia puede la demodulación del canal de detección obtener información precisa de la velocidad angular de entrada. Este artículo analizará el bucle de control del modo de conducción del giroscopio MEMS desde muchos aspectos.Modelo de bucle de control modal de conducciónEl desplazamiento de vibración del modo de accionamiento del giroscopio MEMS se convierte en cambio de capacitancia a través de la estructura de detección del condensador de peine, y luego la capacitancia se convierte en la señal de voltaje que caracteriza el desplazamiento del accionamiento del giroscopio a través del circuito de diodo en anillo. Después de eso, la señal ingresará a dos ramas respectivamente, una señal a través del módulo de control automático de ganancia (AGC) para lograr el control de amplitud, una señal a través del módulo de bucle bloqueado de fase (PLL) para lograr el control de fase. En el módulo AGC, la amplitud de la señal de desplazamiento del variador se demodula primero mediante multiplicación y filtro de paso bajo, y luego la amplitud se controla al valor de referencia establecido a través del enlace PI y se emite la señal de control de la amplitud del variador. La señal de referencia utilizada para la demodulación por multiplicación en el módulo PLL es ortogonal a la señal de referencia de demodulación utilizada en el módulo AGC. Después de que la señal pasa a través del módulo PLL, se puede rastrear la frecuencia resonante del giroscopio. La salida del módulo es la señal de control de la fase de conducción. Las dos señales de control se multiplican para generar el voltaje de accionamiento del giroscopio, que se aplica al peine de accionamiento y se convierte en fuerza impulsora electrostática para activar el modo de accionamiento del giroscopio, para formar un circuito de control de circuito cerrado del modo de accionamiento del giroscopio. La Figura 1 muestra el bucle de control del modo de conducción de un giroscopio MEMS.Figura 1. Diagrama de bloques de la estructura de control del modo de accionamiento del giroscopio MEMSFunción de transferencia modal de conducciónSegún la ecuación dinámica del modo de conducción del giroscopio MEMS vibratorio, la función de transferencia de dominio continuo se puede obtener mediante la transformada de Laplace:Donde, mx es la masa equivalente del modo de manejo del giroscopio, ωx=√kx/mx es la frecuencia de resonancia del modo de manejo y Qx = mxωx/cx es el factor de calidad del modo de manejo.Enlace de conversión de desplazamiento-capacitanciaSegún el análisis de la capacitancia de detección de los dientes del peine, el vínculo de conversión desplazamiento-capacitancia es lineal cuando se ignora el efecto de borde, y la ganancia de la capacitancia diferencial que cambia con el desplazamiento se puede expresar como:Donde, nx es el número de peines activos accionados por el modo giroscópico, ε0 es la constante dieléctrica de vacío, hx es el espesor de los peines de detección de conducción, lx es la longitud de superposición de los peines de detección de conducción activos y fijos en reposo, y dx es la distancia entre los dientes.Enlace de conversión de capacitancia-voltajeEl circuito de conversión de voltaje de capacitor utilizado en este artículo es un circuito de diodo en anillo y su diagrama esquemático se muestra en la Figura 2.Figura 2 Diagrama esquemático del circuito de diodo en anillo.En la figura, C1 y C2 son condensadores de detección diferencial de giroscopio, C3 y C4 son condensadores de demodulación y Vca son amplitudes de onda cuadrada. El principio de funcionamiento es: cuando la onda cuadrada está en el semiciclo positivo, los diodos D2 y D4 se encienden, luego el condensador C1 carga C4 y C2 carga C3; Cuando la onda cuadrada está en un medio período positivo, los diodos D1 y D3 se encienden, luego el capacitor C1 se descarga en C3 y C2 se descarga en C4. De esta forma, después de varios ciclos de onda cuadrada, la tensión en los condensadores demodulados C3 y C4 se estabilizará. Su expresión de voltaje es:Para el giroscopio micromecánico de silicio estudiado en este artículo, su capacitancia estática es del orden de varios pF y la variación de capacitancia es inferior a 0,5 pF, mientras que la capacitancia de demodulación utilizada en el circuito es del orden de 100 pF, por lo que hay CC0》∆C y C2》∆C2, y la ganancia de conversión de voltaje del capacitor se obtiene mediante una fórmula simplificada:Donde, Kpa es el factor de amplificación del amplificador diferencial, C0 es la capacitancia de demodulación, C es la capacitancia estática de la capacitancia de detección, Vca es la amplitud de la portadora y VD es la caída de voltaje del diodo.Enlace de conversión de capacitancia-voltajeEl control de fase es una parte importante del control del accionamiento del giroscopio MEMS. La tecnología de bucle de bloqueo de fase puede rastrear el cambio de frecuencia de la señal de entrada en su banda de frecuencia capturada y bloquear el cambio de fase. Por lo tanto, este artículo utiliza la tecnología de bucle de bloqueo de fase para ingresar al control de fase del giroscopio, y su diagrama de bloques de estructura básica se muestra en la Figura 3.Cifra. 3 Diagrama de bloques de la estructura básica de PLL.PLL es un sistema de regulación automática de fase de retroalimentación negativa, su principio de funcionamiento se puede resumir de la siguiente manera: La señal de entrada externa ui(t) y la señal de retroalimentación uo(t) de salida del VCO se ingresan al discriminador de fase al mismo tiempo para complete la comparación de fase de las dos señales, y el extremo de salida del discriminador de fase genera una señal de voltaje de error ud(t) que refleja la diferencia de fase θe(t) de las dos señales; La señal a través del filtro de bucle filtrará los componentes de alta frecuencia y el ruido, obtendrá un oscilador de control de voltaje uc(t), el oscilador de control de voltaje ajustará la frecuencia de la señal de salida de acuerdo con este voltaje de control, de modo que se acerque gradualmente. a la frecuencia de la señal de entrada y la señal de salida final uo (t). Cuando la frecuencia de ui (t) es igual a uo (t) o un valor estable, el bucle alcanza un estado bloqueado.Control automático de gananciaEl control automático de ganancia (AGC) es un sistema de retroalimentación negativa de bucle cerrado con control de amplitud que, combinado con un bucle de bloqueo de fase, proporciona vibración estable en amplitud y fase para el modo de accionamiento del giroscopio. Su diagrama de estructura se muestra en la Figura 4.Figura 4. Diagrama de bloques de la estructura de control automático de gananciaEl principio de funcionamiento del control automático de ganancia se puede resumir de la siguiente manera: la señal ui(t) con la información de desplazamiento del impulsor del giroscopio se ingresa al enlace de detección de amplitud, la señal de amplitud de desplazamiento del impulsor se extrae mediante demodulación multiplicativa y luego la señal de alta frecuencia los componentes y el ruido se filtran mediante un filtro de paso bajo; En este momento, la señal es una señal de voltaje CC relativamente pura que caracteriza el desplazamiento del variador, y luego controla la señal en el valor de referencia dado a través de un enlace PI, y emite la señal eléctrica ua(t) que controla la amplitud del variador para completarse. el control de amplitud.ConclusiónEn este artículo, se presenta el bucle de control del modo de conducción del giroscopio MEMS, incluido el modelo, la conversión de capacitancia de desbloqueo, la conversión de capacitancia-voltaje, el bucle de bloqueo de fase y el control automático de ganancia. Como fabricante de sensores giroscópicos MEMS, Micro-Magic Inc ha realizado una investigación detallada sobre los giroscopios MEMS y, a menudo, ha popularizado y compartido el conocimiento relevante sobre los giroscopios MEMS. Para una comprensión más profunda del giroscopio MEMS, puede consultar los parámetros de MG-501 y MG1001.Si está interesado en obtener más conocimientos y productos de MEMS, contáctenos. MG502Giroscopio MEMS MG502   
  • Comparación de especificaciones técnicas del giroscopio MEMS de grado de navegación
    Comparación de especificaciones técnicas del giroscopio MEMS de grado de navegación Jan 10, 2025
    Puntos claveProducto: Giroscopio MEMS de grado de navegaciónCaracterísticas clave:Componentes: Giroscopio MEMS para una medición precisa de la velocidad angular.Función: Proporciona datos de navegación de alta precisión con baja deriva, adecuados para una navegación estable y a largo plazo.Aplicaciones: Ideal para la industria aeroespacial, guía de misiles tácticos, navegación marina y robótica industrial.Rendimiento: Presenta baja inestabilidad de polarización y deriva aleatoria, lo que ofrece un rendimiento confiable a lo largo del tiempo.Comparación: Los diferentes modelos (MG-101, MG-401, MG-501) satisfacen diferentes necesidades de precisión, y el MG-101 proporciona la mayor precisión.El giroscopio MEMS es un tipo de sensor inercial para medir la velocidad angular o el desplazamiento angular. Tiene una amplia perspectiva de aplicación en registro de petróleo, guía de armas, aeroespacial, minería, topografía y cartografía, robots industriales y electrónica de consumo. Debido a los diferentes requisitos de precisión en distintos campos, los giroscopios MEMS se dividen en tres niveles en el mercado: nivel de navegación, nivel táctico y nivel de consumidor.Este artículo presentará en detalle el giroscopio MEMS de navegación y comparará sus parámetros. Lo siguiente se elaborará a partir de los indicadores técnicos del giroscopio MEMS, el análisis de deriva del giroscopio y la comparación de tres giroscopios MEMS de grado de navegación.Especificaciones técnicas del giroscopio MEMS.El giroscopio MEMS ideal es que la salida de su eje sensible es proporcional a los parámetros angulares de entrada (ángulo, velocidad angular) del eje correspondiente del portador bajo cualquier condición, y no es sensible a los parámetros angulares de su eje transversal, ni ¿Es sensible a algún parámetro axial no angular (como aceleración de vibración y aceleración lineal)? Los principales indicadores técnicos del giroscopio MEMS se muestran en la Tabla 1.Indicador técnicoUnidadSignificadoRango de medición(°)/sEfectivamente sensible al rango de velocidad angular de entradaSesgo cero(°)/horaLa salida de un giroscopio cuando la velocidad de entrada en el giroscopio es cero. Debido a que la producción es diferente, la tasa de entrada equivalente generalmente se usa para representar el mismo tipo de producto, y cuanto menor sea el sesgo cero, mejor; Diferentes modelos de productos, no cuanto menor sea el sesgo cero, mejor.Repetibilidad del sesgo(°)/h(1σ)En las mismas condiciones y a intervalos determinados (sucesivos, diarios, cada dos días…) El grado de concordancia entre los valores parciales de mediciones repetidas. Expresado como la desviación estándar de cada compensación medida. Cuanto más pequeño, mejor para todos los giroscopios (evalúe lo fácil que es compensar el cero)Deriva cero(°)/sLa tasa de cambio de tiempo de la desviación de la salida del giroscopio de la salida ideal. Contiene componentes tanto estocásticos como sistemáticos y se expresa en términos del desplazamiento angular de entrada correspondiente con respecto al espacio inercial en la unidad de tiempo.factor de escalaV/(°)/s、mA/(°)/sLa relación entre el cambio en la producción y el cambio en la entrada que se va a medir.Ancho de bandaHzEn la prueba característica de frecuencia del giroscopio, se estipula que el rango de frecuencia correspondiente a la amplitud de la amplitud medida se reduce en 3 dB, y la precisión del giroscopio se puede mejorar sacrificando el ancho de banda del giroscopio.Tabla 1 Principales índices técnicos del giroscopio MEMSAnálisis de deriva del giroscopio.Si hay un par de interferencia en el giroscopio, el eje del rotor se desviará del acimut de referencia estable original y generará un error. El ángulo de desviación del eje del rotor con respecto al acimut del espacio inercial (o azimut de referencia) en unidad de tiempo se denomina tasa de deriva giroscópica. El principal índice para medir la precisión del giroscopio es la tasa de deriva.La deriva giroscópica se divide en dos categorías: una es sistemática, la ley se conoce y provoca una deriva regular, por lo que puede compensarse mediante computadora; El otro tipo es causado por factores aleatorios, lo que provoca una deriva aleatoria. La tasa de deriva sistemática se expresa mediante el desplazamiento angular por unidad de tiempo, y la tasa de deriva aleatoria se expresa mediante el valor cuadrático medio del desplazamiento angular por unidad de tiempo o la desviación estándar. El rango aproximado de tasas de deriva aleatoria de varios tipos de giroscopios que se puede alcanzar actualmente se muestra en la Tabla 2.Tipo de giroscopioTasa de deriva aleatoria/(°)·h-1Giroscopio con rodamiento de bolas10-1Giroscopio con rodamiento giratorio1-0.1Giroscopio de flotador líquido0,01-0,001Giroscopio de flotador de aire0,01-0,001Giroscopio sintonizado dinámicamente0,01-0,001giroscopio electrostático0,01-0,0001Giroscopio resonante hemisférico0,1-0,01Giroscopio láser de anillo0,01-0,001giroscopio de fibra óptica1-0.1Tabla 2 Tasas de deriva aleatoria de varios tipos de giroscopios El rango aproximado de velocidad de deriva aleatoria del giroscopio requerido por varias aplicaciones se muestra en la Tabla 3. El índice típico de precisión de posicionamiento del sistema de navegación inercial es 1 n milla/h (1 n milla = 1852 m), lo que requiere que la velocidad de deriva aleatoria del giroscopio alcance 0,01(°)/h, por lo que el giroscopio con una velocidad de deriva aleatoria de 0,01(°)/h suele denominarse giroscopio de navegación inercial.SolicitudRequisitos para la tasa de deriva aleatoria de giroscopio/(°)·h-1Califica el giroscopio en el sistema de control de vuelo.150-10Giroscopio vertical en el sistema de control de vuelo.30-10Giroscopio direccional en el sistema de control de vuelo.10-1Sistema de guía inercial de misiles tácticos.1-0.1Brújula giroscópica marina, sistema de actitud de rumbo con correas, posición lateral de artillería, sistema de navegación inercial para vehículos terrestres0,1-0,01Sistemas de navegación inercial para aviones y barcos.0,01-0,001Misiles estratégicos, sistema de guía inercial de misiles de crucero.0,01-0,0005Tabla 3 Requisitos para la tasa de deriva aleatoria del giroscopio en diversas aplicaciones Comparación de tres giroscopios MEMS de grado de navegaciónLa serie MG de Micro-Magic Inc es un giroscopio MEMS de navegación con un alto nivel de precisión para satisfacer las necesidades de diversos campos. La siguiente tabla compara el rango, la inestabilidad del sesgo, el recorrido aleatorio angular, la estabilidad del sesgo, el factor de escala, el ancho de banda y el ruido. MG-101MG-401MG-501Rango dinámico (grados/s)±100±400±500Inestabilidad del sesgo (grados/h)0.10,52Paseo aleatorio angular (°/√h)0.0050,025~0,050,125-0,1Estabilidad del sesgo(1σ 10s)(grados/hr)0.10,52~5Tabla 4 Tabla de comparación de parámetros de tres giroscopios MEMS de grado de navegaciónEspero que a través de este artículo pueda comprender los indicadores técnicos del giroscopio MEMS de grado de navegación y la relación comparativa entre ellos. Si está interesado en obtener más conocimientos sobre el giroscopio MEMS, hable con nosotros. MG502Giroscopio MEMS MG502  
  • Investigación sobre la fusión segmentada del sistema de búsqueda de norte de pozo con giroscopio MEMS
    Investigación sobre la fusión segmentada del sistema de búsqueda de norte de pozo con giroscopio MEMS Jan 14, 2025
    Puntos claveProducto: Sistema de búsqueda de norte de pozo con giroscopio MEMSCaracterísticas clave:Componentes: Emplea giroscopios MEMS para la búsqueda del norte, con tamaño compacto, bajo costo y alta resistencia a los golpes.Función: Utiliza un método mejorado de dos posiciones (90° y 270°) y corrección de actitud en tiempo real para una determinación precisa del norte.Aplicaciones: Optimizado para sistemas de perforación de fondo de pozo en entornos subterráneos complejos.Fusión de datos: combina datos de giroscopio con correcciones de declinación magnética locales para el cálculo del norte verdadero, lo que garantiza una navegación precisa durante la perforación.Conclusión: Ofrece capacidades de búsqueda del norte precisas, confiables e independientes, ideales para pozos y aplicaciones similares.El nuevo giroscopio MEMS es un tipo de giroscopio inercial con estructura simple, que tiene las ventajas de bajo costo, tamaño pequeño y resistencia a vibraciones de alto impacto. El giroscopio inercial de búsqueda del norte puede completar la búsqueda independiente del norte en todas las condiciones climáticas sin restricciones externas y puede lograr un trabajo rápido, de alta eficiencia, alta precisión y continuo. Basado en las ventajas del giroscopio MEMS, el giroscopio MEMS es muy adecuado para el sistema de búsqueda del norte en el fondo del pozo. Este artículo describe la investigación de fusión segmentada del sistema de búsqueda del norte del pozo giroscópico MEMS. A continuación se presentará el hallazgo de norte mejorado de dos posiciones, el esquema del hallazgo de norte de fusión de pozo giroscópico MEMS y la determinación del valor de hallazgo de norte.Búsqueda de norte de dos posiciones mejoradaEl esquema estático de búsqueda del norte de dos posiciones generalmente selecciona 0° y 180° como posiciones inicial y final de la búsqueda del norte. Después de repetidos experimentos, se recopila la velocidad angular de salida del giroscopio y el ángulo final de búsqueda del norte se obtiene combinando la latitud local. El experimento adoptó el método de dos posiciones cada 10°, recopiló 360° del plato giratorio y se recopiló un total de 36 conjuntos de datos. Después de promediar cada conjunto de datos, los valores medidos de la solución se muestran en la Figura 1 a continuación.Figura 1 Curva de ajuste de la salida del giroscopio de 0 a 360°Como puede verse en la Figura 1, la curva de ajuste de salida es una curva coseno, pero los datos y ángulos experimentales aún son pequeños y los resultados experimentales carecen de precisión. Se realizaron experimentos repetidos y el ángulo de adquisición se extendió a 0 ~ 660°, y el método de dos posiciones se realizó cada 10° desde 0°, y los resultados de los datos se muestran en la Figura 2. La tendencia de la imagen es coseno curva, y hay diferencias obvias en la distribución de datos. En la cresta y el valle de la curva del coseno, la distribución de los puntos de datos está dispersa y el grado de ajuste a la curva es bajo, mientras que en el lugar con la pendiente más alta de la curva, el ajuste de los puntos de datos a la curva es mayor. obvio.Figura 2 Curva de ajuste de la salida del giroscopio en dos posiciones 0~660°Combinado con la relación entre el azimut y la amplitud de salida del giroscopio en la Figura 3, se puede concluir que el ajuste de los datos es mejor cuando se adopta el norte de dos posiciones a 90° y 270°, lo que indica que es más fácil y más preciso detectar el ángulo norte en dirección este-oeste. Por lo tanto, en este artículo se utilizan 90°, 270°, en lugar de 0° y 180°, como posiciones de adquisición de salida del giroscopio de dos posiciones hacia el norte.Figura 3 Relación entre el acimut y la amplitud de salida del giroscopioBúsqueda del norte de fusión de pozo con giroscopio MEMSCuando se utiliza el giroscopio MEMS en el sistema de búsqueda del norte de un pozo, se enfrenta a un entorno complejo y habrá un ángulo de actitud variable con la perforación con broca, por lo que la solución del ángulo norte se vuelve mucho más complicada. En esta sección, basado en la mejora del esquema de búsqueda de norte de dos posiciones en la sección anterior, se propone un método para obtener el ángulo de actitud controlando la rotación de acuerdo con la información de los datos de salida, y se obtiene el ángulo incluido con el norte. El diagrama de flujo específico se muestra en la Figura 4.El giroscopio MEMS se transmite a la computadora superior a través de la interfaz de datos RS232. Como se muestra en la Figura 4, después de obtener el ángulo norte inicial buscando el norte en las dos posiciones, se lleva a cabo el siguiente paso de perforación mientras se perfora. Después de recibir la instrucción del norte, se detiene el trabajo de perforación. El ángulo de actitud emitido por el giroscopio MEMS se recopila y transmite a la computadora superior. La rotación del sistema de búsqueda del norte del pozo está controlada por la información del ángulo de actitud, y el ángulo de balanceo y el ángulo de inclinación se ajustan a 0. El ángulo de rumbo en este momento es el ángulo entre el eje sensible y la dirección del norte magnético.En este esquema, el ángulo entre el giroscopio MEMS y la dirección norte verdadera se puede obtener en tiempo real recopilando información del ángulo de actitud.Figura 4 Diagrama de flujo de búsqueda del norte de FusionSe determina el valor de búsqueda del norte.En el esquema de búsqueda del norte de fusión, la búsqueda mejorada del norte de dos posiciones se realizó en el giroscopio MEMS. Una vez completado el hallazgo del norte, se obtuvo la posición norte inicial, se registró el ángulo de rumbo θ y el estado de actitud inicial fue (0,0, θ), como se muestra en la Figura 5 (a). Cuando la broca está perforando, el ángulo de actitud del giroscopio cambia y el ángulo de balanceo y el ángulo de paso son regulados por la mesa giratoria, como se muestra en la Figura 5(b).Como se muestra en la Figura 5 (b), al perforar la broca, el sistema recibe la información del ángulo de actitud del instrumento de actitud y necesita juzgar los tamaños del ángulo de balanceo γ 'y el ángulo de paso β', y rotarlos a través del control de rotación. sistema para hacerlos girar a 0. En este momento, los datos del ángulo del rumbo de salida son el ángulo entre el eje sensible y la dirección del norte magnético. El ángulo entre el eje sensible y la dirección del norte verdadero debe obtenerse de acuerdo con la relación entre el norte magnético y la dirección del norte verdadero, y el ángulo del norte verdadero debe obtenerse combinando el ángulo de declinación magnética local. La solución es la siguiente:θ’=Φ-∆φEn la fórmula anterior, θ 'broca y el ángulo de dirección norte verdadero, ∆φ es el ángulo de declinación magnética local, Φ es la broca y el ángulo norte magnético.Figura 5 Cambio de actitud inicial y de perforación ÁnguloSe determina el valor de búsqueda del norte.En este capítulo, se estudia el esquema de búsqueda del norte del sistema de búsqueda del norte subterráneo con giroscopio MEMS. Basado en el esquema de búsqueda del norte de dos posiciones, se propone un esquema mejorado de búsqueda del norte de dos posiciones con 90° y 270° como posiciones iniciales. Con el progreso continuo del giroscopio MEMS, el giroscopio de búsqueda de norte MEMS puede lograr una búsqueda de norte independiente, como el MG2-101, su rango de medición dinámica es de 100°/s, puede funcionar en un entorno de -40 °C ~+85 °C , su inestabilidad de polarización es de 0,1 °/h y el recorrido aleatorio con velocidad angular es de 0,005 °/√ h.Espero que pueda comprender el esquema de búsqueda del norte del giroscopio MEMS a través de este artículo y espero poder discutir temas profesionales con usted. MG502Giroscopio MEMS MG502  
  • Investigación sobre el patrón de deriva de las constantes de los instrumentos del giroteodolito con la temperatura
    Investigación sobre el patrón de deriva de las constantes de los instrumentos del giroteodolito con la temperatura Jan 14, 2025
    Puntos claveProducto: Sistema de navegación inercial puro (INS) basado en IMUCaracterísticas clave:Componentes: Utiliza acelerómetros y giroscopios MEMS para medir en tiempo real la aceleración y la velocidad angular.Función: Integra datos de posición y actitud iniciales con mediciones de IMU para calcular la posición y actitud en tiempo real.Aplicaciones: Ideal para navegación en interiores, aeroespacial, sistemas autónomos y robótica.Desafíos: aborda errores de sensores, deriva acumulativa e impactos ambientales dinámicos con métodos de calibración y filtrado.Conclusión: Proporciona un posicionamiento preciso en entornos desafiantes, con un rendimiento sólido cuando se combina con sistemas de posicionamiento auxiliares como el GPS. La ley de la deriva constante del instrumento con la temperatura de un giroteodolito es un fenómeno complejo que implica la interacción de múltiples componentes y sistemas dentro del instrumento. La constante del instrumento se refiere al valor de referencia de medición del giroteodolito en condiciones específicas. Es fundamental garantizar la precisión y la estabilidad de las mediciones.Los cambios de temperatura provocarán la desviación de las constantes del instrumento, principalmente porque las diferencias en los coeficientes de expansión térmica de los materiales provocan cambios en la estructura del instrumento y el rendimiento de los componentes electrónicos cambia con los cambios de temperatura. Este patrón de deriva suele ser no lineal porque los diferentes materiales y componentes responden de manera diferente a la temperatura.Para estudiar la deriva de las constantes del instrumento de un giroteodolito con la temperatura, generalmente se requiere una serie de experimentos y análisis de datos. Esto incluye calibrar y medir el instrumento a diferentes temperaturas, registrar cambios en las constantes del instrumento y analizar la relación entre la temperatura y las constantes del instrumento.Mediante el análisis de datos experimentales, se puede encontrar la tendencia de las constantes del instrumento que cambian con la temperatura y se puede intentar establecer un modelo matemático para describir esta relación. Dichos modelos pueden basarse en regresión lineal, ajuste polinómico u otros métodos estadísticos y se utilizan para predecir y compensar la deriva en las constantes del instrumento a diferentes temperaturas.Comprender la deriva de las constantes del instrumento de un giroteodolito con la temperatura es muy importante para mejorar la precisión y la estabilidad de las mediciones. Al tomar las medidas de compensación correspondientes, como el control de temperatura, la calibración y el procesamiento de datos, se puede reducir el impacto de la temperatura en las constantes del instrumento, mejorando así el rendimiento de medición del giroteodolito.Cabe señalar que las reglas de deriva específicas y los métodos de compensación pueden variar según los diferentes modelos de giroteodolito y escenarios de aplicación. Por lo tanto, en aplicaciones prácticas, es necesario estudiar e implementar las medidas correspondientes según situaciones específicas.El estudio del patrón de deriva de las constantes del instrumento del giroteodolito con la temperatura generalmente implica monitorear y analizar el desempeño del instrumento en diferentes condiciones de temperatura.El propósito de dicha investigación es comprender cómo los cambios de temperatura afectan las constantes del instrumento de un giroteodolito y posiblemente encontrar una manera de compensar o corregir este efecto de temperatura.Las constantes instrumentales generalmente se refieren a las propiedades inherentes de un instrumento en condiciones específicas, como la temperatura estándar. Para el giroteodolito, las constantes del instrumento pueden estar relacionadas con su precisión de medición, estabilidad, etc.Cuando cambia la temperatura ambiente, las propiedades del material, la estructura mecánica, etc. dentro del instrumento pueden cambiar, afectando así las constantes del instrumento.Para estudiar este patrón de deriva, normalmente se requieren los siguientes pasos:Seleccione una gama de diferentes puntos de temperatura para cubrir los entornos operativos que puede encontrar un teodolito giroscópico.Tome múltiples mediciones direccionales en cada punto de temperatura para obtener suficientes muestras de datos.Analice los datos y observe la tendencia de las constantes del instrumento en función de la temperatura.Intente construir un modelo matemático para describir esta relación, como regresión lineal, ajuste polinomial, etc.Utilice este modelo para predecir constantes de instrumentos a diferentes temperaturas y posiblemente desarrollar métodos para compensar los efectos de la temperatura.Un modelo matemático podría verse así:K(T) = a + b × T + c × T^2 +…Entre ellos, K(T) es la constante del instrumento a temperatura T, y a, b, c, etc. son los coeficientes a ajustar.Este tipo de investigación es de gran importancia para mejorar el rendimiento del giroteodolito en diferentes condiciones ambientales.Cabe señalar que los métodos de investigación y los modelos matemáticos específicos pueden variar según los modelos de instrumentos y los escenarios de aplicación específicos.ResumirLa ley de la deriva constante del instrumento con la temperatura de un giroteodolito es un fenómeno complejo que implica la interacción de múltiples componentes y sistemas dentro del instrumento. La constante del instrumento se refiere al valor de referencia de medición del giroteodolito en condiciones específicas. Es fundamental garantizar la precisión y la estabilidad de las mediciones.Los cambios de temperatura provocarán la desviación de las constantes del instrumento, principalmente porque las diferencias en los coeficientes de expansión térmica de los materiales provocan cambios en la estructura del instrumento y el rendimiento de los componentes electrónicos cambia con los cambios de temperatura. Este patrón de deriva suele ser no lineal porque los diferentes materiales y componentes responden de manera diferente a la temperatura.Para estudiar la deriva de las constantes del instrumento de un giroteodolito con la temperatura, generalmente se requiere una serie de experimentos y análisis de datos. Esto incluye calibrar y medir el instrumento a diferentes temperaturas, registrar cambios en las constantes del instrumento y analizar la relación entre la temperatura y las constantes del instrumento.Mediante el análisis de datos experimentales, se puede encontrar la tendencia de las constantes del instrumento que cambian con la temperatura y se puede intentar establecer un modelo matemático para describir esta relación. Dichos modelos pueden basarse en regresión lineal, ajuste polinómico u otros métodos estadísticos y se utilizan para predecir y compensar la deriva en las constantes del instrumento a diferentes temperaturas.Comprender la deriva de las constantes del instrumento de un giroteodolito con la temperatura es muy importante para mejorar la precisión y la estabilidad de las mediciones. Al tomar las medidas de compensación correspondientes, como el control de temperatura, la calibración y el procesamiento de datos, se puede reducir el impacto de la temperatura en las constantes del instrumento, mejorando así el rendimiento de medición del giroteodolito.Cabe señalar que las reglas de deriva específicas y los métodos de compensación pueden variar según los diferentes modelos de giroteodolito y escenarios de aplicación. Por lo tanto, en aplicaciones prácticas, es necesario estudiar e implementar las medidas correspondientes según situaciones específicas.El estudio del patrón de deriva de las constantes del instrumento del giroteodolito con la temperatura generalmente implica monitorear y analizar el desempeño del instrumento en diferentes condiciones de temperatura.El propósito de dicha investigación es comprender cómo los cambios de temperatura afectan las constantes del instrumento de un giroteodolito y posiblemente encontrar una manera de compensar o corregir este efecto de temperatura.Las constantes instrumentales generalmente se refieren a las propiedades inherentes de un instrumento en condiciones específicas, como la temperatura estándar. Para el giroteodolito, las constantes del instrumento pueden estar relacionadas con su precisión de medición, estabilidad, etc.Cuando cambia la temperatura ambiente, las propiedades del material, la estructura mecánica, etc. dentro del instrumento pueden cambiar, afectando así las constantes del instrumento.Para estudiar este patrón de deriva, normalmente se requieren los siguientes pasos:Seleccione una gama de diferentes puntos de temperatura para cubrir los entornos operativos que puede encontrar un teodolito giroscópico.Tome múltiples mediciones direccionales en cada punto de temperatura para obtener suficientes muestras de datos.Analice los datos y observe la tendencia de las constantes del instrumento en función de la temperatura.Intente construir un modelo matemático para describir esta relación, como regresión lineal, ajuste polinomial, etc.Utilice este modelo para predecir constantes de instrumentos a diferentes temperaturas y posiblemente desarrollar métodos para compensar los efectos de la temperatura.Un modelo matemático podría verse así:K(T) = a + b × T + c × T^2 +…Entre ellos, K(T) es la constante del instrumento a temperatura T, y a, b, c, etc. son los coeficientes a ajustar.Este tipo de investigación es de gran importancia para mejorar el rendimiento del giroteodolito en diferentes condiciones ambientales.Cabe señalar que los métodos de investigación y los modelos matemáticos específicos pueden variar según los modelos de instrumentos y los escenarios de aplicación específicos. MG502Giroscopio MEMS MG502  
Subscibe To Newsletter
Continúe leyendo, manténgase informado, suscríbase y le invitamos a que nos cuente lo que piensa.
f y

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos lo antes posible.
entregar

Hogar

Productos

Whatsapp

Contáctenos