Análisis de precisión de la detección de deformación de estructuras de ingeniería giroscópica de fibra óptica
Producto: Sistema de detección de deformaciones basado en giroscopio de fibra óptica
Características clave:
Conclusión:
Este sistema proporciona mediciones de deformación precisas y confiables, ofreciendo valiosas soluciones para las necesidades de análisis estructural y de ingeniería.
El principio del método de detección de deformación de estructuras de ingeniería basado en giroscopio de fibra óptica es fijar el giroscopio de fibra óptica al dispositivo de detección, medir la velocidad angular del sistema de detección cuando se ejecuta sobre la superficie medida de la estructura de ingeniería, medir la distancia operativa de el dispositivo de detección y calcular la trayectoria operativa del dispositivo de detección para realizar la detección de la deformación de la estructura de ingeniería. Este método se denomina método de trayectoria en este artículo. Este método puede describirse como "navegación en plano bidimensional", es decir, la posición del soporte se resuelve en la superficie vertical de la superficie de la estructura medida y finalmente se obtiene la trayectoria del soporte a lo largo de la superficie de la estructura medida.
Según el principio del método de trayectoria, sus principales fuentes de error incluyen el error de referencia, el error de medición de la distancia y el error de medición del ángulo. El error de referencia se refiere al error de medición del ángulo de inclinación inicial θ0, el error de medición de la distancia se refiere al error de medición de ΔLi y el error de medición del ángulo se refiere al error de medición de Δθi, que es causado principalmente por el error de medición del Velocidad angular del giroscopio de fibra óptica. Este artículo no considera la influencia del error de referencia y el error de medición de distancia en el error de detección de deformación, solo se analiza el error de detección de deformación causado por el error del giroscopio de fibra óptica.
El giroscopio de fibra óptica es un sensor para medir la velocidad angular basado en el efecto Sagnac. Después de que la luz emitida por la fuente de luz pasa a través de la guía de ondas Y, se forman dos haces de luz que giran en direcciones opuestas en el anillo de fibra. Cuando el portador gira con respecto al espacio inercial, hay una diferencia de trayectoria óptica entre los dos haces de luz, y la señal de interferencia óptica relacionada con la velocidad angular de rotación se puede detectar en el extremo del detector, para medir la velocidad diagonal.
La expresión matemática de la señal de salida del giroscopio de fibra óptica es: F=Kw+B0+V. Donde F es la salida del giroscopio, K es el factor de escala y ω es la salida del giroscopio.
La entrada de velocidad angular en el eje sensible, B0 es la polarización giroscópica cero, υ es el término de error integrado, incluido el ruido blanco y los componentes que varían lentamente causados por varios ruidos con un tiempo de correlación prolongado, υ también puede considerarse como el error de polarización cero. .
Las fuentes de error de medición del giroscopio de fibra óptica incluyen el error del factor de escala y el error de desviación cero. En la actualidad, el error del factor de escala del giroscopio de fibra óptica aplicado en ingeniería es 10-5~10-6. En la aplicación de detección de deformación, la entrada de velocidad angular es pequeña y el error de medición causado por el error del factor de escala es mucho menor que el causado por el error de desviación cero, que puede ignorarse. El componente de CC del error de polarización cero se caracteriza por la repetibilidad de polarización cero Br, que es la desviación estándar del valor de polarización cero en múltiples pruebas. El componente de CA se caracteriza por una estabilidad de polarización cero Bs, que es la desviación estándar del valor de salida del giroscopio de su media en una prueba, y su valor está relacionado con el tiempo de muestreo del giroscopio.
Tomando como ejemplo el modelo de viga apoyada simple, se calcula el error de detección de deformación y se establece el modelo teórico de deformación estructural. Sobre esta base se establece la detección.
Según la velocidad de funcionamiento y el tiempo de muestreo del sistema, se puede obtener la velocidad angular teórica del giroscopio de fibra óptica. Luego, el error de medición de la velocidad angular del giroscopio de fibra óptica se puede simular de acuerdo con el modelo de error de desviación cero del giroscopio de fibra óptica establecido anteriormente.
La configuración de simulación de la velocidad de carrera y el tiempo de muestreo adopta un modo de variación de rango, es decir, el ΔLi pasado por cada tiempo de muestreo es fijo y el tiempo de muestreo del mismo segmento de línea cambia cambiando la velocidad de carrera. Por ejemplo, cuando ΔLi es 1 mm, como cuando la velocidad de carrera es 2 m/s, el tiempo de muestreo es 0,5 ms. Si la velocidad de funcionamiento es de 0,1 m/s, el tiempo de muestreo es de 10 ms.
En primer lugar, se analiza el efecto del error de repetibilidad con polarización cero. Cuando no hay un error de estabilidad de polarización cero, el error de medición de la velocidad angular causado por el error de polarización cero es fijo, por ejemplo, cuanto más rápida sea la velocidad de movimiento, más corto será el tiempo total de medición, menor será el impacto del error de polarización cero y menor será la deformación. error de medición. Cuando la velocidad de carrera es rápida, el error de estabilidad de polarización cero es el factor principal que causa el error de medición del sistema. Cuando la velocidad de funcionamiento es baja, el error de repetibilidad de polarización cero se convierte en la principal fuente del error de medición del sistema.
Utilizando un índice giroscópico de fibra óptica de precisión media típico, es decir, la estabilidad de polarización cero es de 0,5 °/h cuando el tiempo de muestreo es de 1 s, la repetibilidad cero es de 0,05 °/h. Compare los errores de medición del sistema a la velocidad de funcionamiento de 2 m/s, 1 m/s, 0,2 m/s, 0,1 m/s, 0,02 m/s, 0,01 m/s, 0,002 m/s y 0,001 m/s. Cuando la velocidad de funcionamiento es de 2 m/s, el error de medición es de 8,514 μm (RMS), cuando la velocidad de medición se reduce a 0,2 m/s, el error de medición es de 34,089 μm (RMS), cuando la velocidad de medición se reduce a 0,002 m /s, el error de medición es 2246,222μm (RMS), como se puede ver en los resultados de la comparación. Cuanto más rápida sea la velocidad de carrera, menor será el error de medición. Teniendo en cuenta la conveniencia de la operación de ingeniería, la velocidad de funcionamiento de 2 m/s puede lograr una precisión de medición superior a 10 μm.
Con base en el análisis de simulación de la medición de la deformación de la estructura de ingeniería basada en un giroscopio de fibra óptica, se establece el modelo de error del giroscopio de fibra óptica y se obtiene la relación entre el error de medición de la deformación y el rendimiento del giroscopio de fibra óptica utilizando la viga soportada simple. modelo como ejemplo. Los resultados de la simulación muestran que cuanto más rápido funcione el sistema, es decir, cuanto más corto sea el tiempo de muestreo del giroscopio de fibra óptica, mayor será la precisión de la medición de la deformación del sistema cuando el número de muestreo no cambia y se garantiza la precisión de la detección de distancia. Con el índice giroscópico de fibra óptica de precisión media típico y la velocidad de funcionamiento de 2 m/s, se puede lograr una precisión de medición de deformación superior a 10 μm.
Micro-Magic Inc GF-50 tiene un diámetro de φ50*36,5 mm y una precisión de 0,1º/h. GF-60 precisión 0.05º/h, pertenece al alto nivel táctico del giroscopio de fibra óptica, nuestra empresa produjo giroscopio con tamaño pequeño, peso ligero, bajo consumo de energía, inicio rápido, operación simple, fácil de usar y otras características, ampliamente utilizado en INS, IMU, sistema de posicionamiento, sistema de búsqueda del norte, estabilidad de plataforma y otros campos. Si está interesado en nuestro giroscopio de fibra óptica, no dude en contactarnos.
Xml política de privacidad blog Mapa del sitio
Derechos de autor @ Micro-Magic Inc Reservados todos los derechos. RED SOPORTADA